def build_critic(input_var=None):
from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
DenseLayer)
try:
from lasagne.layers.dnn import batch_norm_dnn as batch_norm
except ImportError:
from lasagne.layers import batch_norm
from lasagne.nonlinearities import LeakyRectify
lrelu = LeakyRectify(0.2)
# input: (None, 1, 28, 28)
layer = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)
# two convolutions
layer = batch_norm(Conv2DLayer(layer, 64, 5, stride=2, pad='same',
nonlinearity=lrelu))
layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
nonlinearity=lrelu))
# fully-connected layer
layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
# output layer (linear)
layer = DenseLayer(layer, 1, nonlinearity=None)
print ("critic output:", layer.output_shape)
return layer
python类LeakyRectify()的实例源码
def build_critic(input_var=None, verbose=False):
from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
DenseLayer)
try:
from lasagne.layers.dnn import batch_norm_dnn as batch_norm
except ImportError:
from lasagne.layers import batch_norm
from lasagne.nonlinearities import LeakyRectify, sigmoid
lrelu = LeakyRectify(0.2)
# input: (None, 1, 28, 28)
layer = InputLayer(shape=(None, 3, 32, 32), input_var=input_var)
# two convolutions
layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
nonlinearity=lrelu))
layer = batch_norm(Conv2DLayer(layer, 256, 5, stride=2, pad='same',
nonlinearity=lrelu))
layer = batch_norm(Conv2DLayer(layer, 512, 5, stride=2, pad='same',
nonlinearity=lrelu))
# # fully-connected layer
# layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
# output layer (linear)
layer = DenseLayer(layer, 1, nonlinearity=None)
if verbose: print ("critic output:", layer.output_shape)
return layer
def build_critic(input_var=None):
from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
DenseLayer)
try:
from lasagne.layers.dnn import batch_norm_dnn as batch_norm
except ImportError:
from lasagne.layers import batch_norm
from lasagne.nonlinearities import LeakyRectify
lrelu = LeakyRectify(0.2)
# input: (None, 1, 28, 28)
layer = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)
# two convolutions
layer = batch_norm(Conv2DLayer(layer, 64, 5, stride=2, pad='same',
nonlinearity=lrelu))
layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
nonlinearity=lrelu))
# fully-connected layer
layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
# output layer (linear and without bias)
layer = DenseLayer(layer, 1, nonlinearity=None, b=None)
print ("critic output:", layer.output_shape)
return layer
def build_net(nz=10):
# nz = size of latent code
#N.B. using batch_norm applies bn before non-linearity!
F=32
enc = InputLayer(shape=(None,1,28,28))
enc = Conv2DLayer(incoming=enc, num_filters=F*2, filter_size=5,stride=2, nonlinearity=lrelu(0.2),pad=2)
enc = Conv2DLayer(incoming=enc, num_filters=F*4, filter_size=5,stride=2, nonlinearity=lrelu(0.2),pad=2)
enc = Conv2DLayer(incoming=enc, num_filters=F*4, filter_size=5,stride=1, nonlinearity=lrelu(0.2),pad=2)
enc = reshape(incoming=enc, shape=(-1,F*4*7*7))
enc = DenseLayer(incoming=enc, num_units=nz, nonlinearity=sigmoid)
#Generator networks
dec = InputLayer(shape=(None,nz))
dec = DenseLayer(incoming=dec, num_units=F*4*7*7)
dec = reshape(incoming=dec, shape=(-1,F*4,7,7))
dec = Deconv2DLayer(incoming=dec, num_filters=F*4, filter_size=4, stride=2, nonlinearity=relu, crop=1)
dec = Deconv2DLayer(incoming=dec, num_filters=F*4, filter_size=4, stride=2, nonlinearity=relu, crop=1)
dec = Deconv2DLayer(incoming=dec, num_filters=1, filter_size=3, stride=1, nonlinearity=sigmoid, crop=1)
return enc, dec