python类linear()的实例源码

trimodal.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def load_finetuned_dbn(path):
    """
    Load a fine tuned Deep Belief Net from file
    :param path: path to deep belief net parameters
    :return: deep belief net
    """
    dbn = NeuralNet(
        layers=[
            ('input', las.layers.InputLayer),
            ('l1', las.layers.DenseLayer),
            ('l2', las.layers.DenseLayer),
            ('l3', las.layers.DenseLayer),
            ('l4', las.layers.DenseLayer),
            ('l5', las.layers.DenseLayer),
            ('l6', las.layers.DenseLayer),
            ('l7', las.layers.DenseLayer),
            ('output', las.layers.DenseLayer)
        ],
        input_shape=(None, 1200),
        l1_num_units=2000, l1_nonlinearity=sigmoid,
        l2_num_units=1000, l2_nonlinearity=sigmoid,
        l3_num_units=500, l3_nonlinearity=sigmoid,
        l4_num_units=50, l4_nonlinearity=linear,
        l5_num_units=500, l5_nonlinearity=sigmoid,
        l6_num_units=1000, l6_nonlinearity=sigmoid,
        l7_num_units=2000, l7_nonlinearity=sigmoid,
        output_num_units=1200, output_nonlinearity=linear,
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    with open(path, 'rb') as f:
        pretrained_nn = pickle.load(f)
    if pretrained_nn is not None:
        dbn.load_params_from(path)
    return dbn
trimodal.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def create_pretrained_encoder(weights, biases, incoming):
    l_1 = DenseLayer(incoming, 2000, W=weights[0], b=biases[0], nonlinearity=sigmoid, name='fc1')
    l_2 = DenseLayer(l_1, 1000, W=weights[1], b=biases[1], nonlinearity=sigmoid, name='fc2')
    l_3 = DenseLayer(l_2, 500, W=weights[2], b=biases[2], nonlinearity=sigmoid, name='fc3')
    l_4 = DenseLayer(l_3, 50, W=weights[3], b=biases[3], nonlinearity=linear, name='bottleneck')
    return l_4
bimodal.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def load_finetuned_dbn(path):
    """
    Load a fine tuned Deep Belief Net from file
    :param path: path to deep belief net parameters
    :return: deep belief net
    """
    dbn = NeuralNet(
        layers=[
            ('input', las.layers.InputLayer),
            ('l1', las.layers.DenseLayer),
            ('l2', las.layers.DenseLayer),
            ('l3', las.layers.DenseLayer),
            ('l4', las.layers.DenseLayer),
            ('l5', las.layers.DenseLayer),
            ('l6', las.layers.DenseLayer),
            ('l7', las.layers.DenseLayer),
            ('output', las.layers.DenseLayer)
        ],
        input_shape=(None, 1200),
        l1_num_units=2000, l1_nonlinearity=sigmoid,
        l2_num_units=1000, l2_nonlinearity=sigmoid,
        l3_num_units=500, l3_nonlinearity=sigmoid,
        l4_num_units=50, l4_nonlinearity=linear,
        l5_num_units=500, l5_nonlinearity=sigmoid,
        l6_num_units=1000, l6_nonlinearity=sigmoid,
        l7_num_units=2000, l7_nonlinearity=sigmoid,
        output_num_units=1200, output_nonlinearity=linear,
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    with open(path, 'rb') as f:
        pretrained_nn = pickle.load(f)
    if pretrained_nn is not None:
        dbn.load_params_from(path)
    return dbn
bimodal.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def create_pretrained_encoder(weights, biases, incoming):
    l_1 = DenseLayer(incoming, 2000, W=weights[0], b=biases[0], nonlinearity=sigmoid, name='fc1')
    l_2 = DenseLayer(l_1, 1000, W=weights[1], b=biases[1], nonlinearity=sigmoid, name='fc2')
    l_3 = DenseLayer(l_2, 500, W=weights[2], b=biases[2], nonlinearity=sigmoid, name='fc3')
    l_4 = DenseLayer(l_3, 50, W=weights[3], b=biases[3], nonlinearity=linear, name='bottleneck')
    return l_4
evaluate_delta_features.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def compile_delta_features():
    # create input
    input_var = T.tensor3('input', dtype='float32')
    win_var = T.iscalar('theta')
    weights, biases = autoencoder.load_dbn()

    '''
    activations = [sigmoid, sigmoid, sigmoid, linear, sigmoid, sigmoid, sigmoid, linear]
    layersizes = [2000, 1000, 500, 50, 500, 1000, 2000, 1200]
    ae = autoencoder.create_model(l_input, weights, biases, activations, layersizes)
    print_network(ae)
    reconstruct = las.layers.get_output(ae)
    reconstruction_fn = theano.function([input_var], reconstruct, allow_input_downcast=True)
    recon_img = reconstruction_fn(test_data_resized)
    visualize_reconstruction(test_data_resized[225:250], recon_img[225:250])
    '''
    l_input = InputLayer((None, None, 1200), input_var, name='input')

    symbolic_batchsize = l_input.input_var.shape[0]
    symbolic_seqlen = l_input.input_var.shape[1]
    en_activations = [sigmoid, sigmoid, sigmoid, linear]
    en_layersizes = [2000, 1000, 500, 50]

    l_reshape1 = ReshapeLayer(l_input, (-1, l_input.shape[-1]), name='reshape1')
    l_encoder = autoencoder.create_model(l_reshape1, weights[:4], biases[:4], en_activations, en_layersizes)
    encoder_len = las.layers.get_output_shape(l_encoder)[-1]
    l_reshape2 = ReshapeLayer(l_encoder, (symbolic_batchsize, symbolic_seqlen, encoder_len), name='reshape2')
    l_delta = DeltaLayer(l_reshape2, win_var, name='delta')
    l_slice = SliceLayer(l_delta, indices=slice(50, None), axis=-1, name='slice')  # extract the delta coefficients
    l_reshape3 = ReshapeLayer(l_slice, (-1, l_slice.output_shape[-1]), name='reshape3')
    print_network(l_reshape3)

    delta_features = las.layers.get_output(l_reshape3)
    delta_fn = theano.function([input_var, win_var], delta_features, allow_input_downcast=True)

    return delta_fn
sde_autoencoder.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_bottleneck_layer(input_size, encode_size, sigma=0.3):
    W = theano.shared(GlorotUniform().sample(shape=(input_size, encode_size)))

    layers = [
        (InputLayer, {'shape': (None, input_size)}),
        (GaussianNoiseLayer, {'name': 'corrupt', 'sigma': sigma}),
        (DenseLayer, {'name': 'encoder', 'num_units': encode_size, 'nonlinearity': linear, 'W': W}),
        (DenseLayer, {'name': 'decoder', 'num_units': input_size, 'nonlinearity': linear, 'W': W.T}),
    ]
    return W, layers
sde_autoencoder.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_decoder(input_size, decode_size, weights):
    decoder_layers = [
        (InputLayer, {'shape': (None, input_size)}),
        (DenseLayer, {'name': 'decoder', 'num_units': decode_size, 'nonlinearity': linear, 'W': weights})
    ]

    decoder = NeuralNet(
        layers=decoder_layers,
        max_epochs=50,
        objective_loss_function=squared_error,
        update=adadelta,
        regression=True,
        verbose=1
    )
    return decoder
confusion_visualizer.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def load_finetuned_dbn(path):
    """
    Load a fine tuned Deep Belief Net from file
    :param path: path to deep belief net parameters
    :return: deep belief net
    """
    dbn = NeuralNet(
        layers=[
            ('input', las.layers.InputLayer),
            ('l1', las.layers.DenseLayer),
            ('l2', las.layers.DenseLayer),
            ('l3', las.layers.DenseLayer),
            ('l4', las.layers.DenseLayer),
            ('l5', las.layers.DenseLayer),
            ('l6', las.layers.DenseLayer),
            ('l7', las.layers.DenseLayer),
            ('output', las.layers.DenseLayer)
        ],
        input_shape=(None, 1200),
        l1_num_units=2000, l1_nonlinearity=sigmoid,
        l2_num_units=1000, l2_nonlinearity=sigmoid,
        l3_num_units=500, l3_nonlinearity=sigmoid,
        l4_num_units=50, l4_nonlinearity=linear,
        l5_num_units=500, l5_nonlinearity=sigmoid,
        l6_num_units=1000, l6_nonlinearity=sigmoid,
        l7_num_units=2000, l7_nonlinearity=sigmoid,
        output_num_units=1200, output_nonlinearity=linear,
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    with open(path, 'rb') as f:
        pretrained_nn = pickle.load(f)
    if pretrained_nn is not None:
        dbn.load_params_from(path)
    return dbn
confusion_visualizer.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def create_pretrained_encoder(weights, biases, incoming):
    l_1 = DenseLayer(incoming, 2000, W=weights[0], b=biases[0], nonlinearity=sigmoid, name='fc1')
    l_2 = DenseLayer(l_1, 1000, W=weights[1], b=biases[1], nonlinearity=sigmoid, name='fc2')
    l_3 = DenseLayer(l_2, 500, W=weights[2], b=biases[2], nonlinearity=sigmoid, name='fc3')
    l_4 = DenseLayer(l_3, 50, W=weights[3], b=biases[3], nonlinearity=linear, name='bottleneck')
    return l_4
unimodal_nodelta_with_val.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def create_pretrained_encoder(weights, biases, incoming):
    l_1 = DenseLayer(incoming, 2000, W=weights[0], b=biases[0], nonlinearity=sigmoid, name='fc1')
    l_2 = DenseLayer(l_1, 1000, W=weights[1], b=biases[1], nonlinearity=sigmoid, name='fc2')
    l_3 = DenseLayer(l_2, 500, W=weights[2], b=biases[2], nonlinearity=sigmoid, name='fc3')
    l_4 = DenseLayer(l_3, 50, W=weights[3], b=biases[3], nonlinearity=linear, name='encoder')
    return l_4
trimodal_with_val.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def create_pretrained_encoder(weights, biases, incoming):
    l_1 = DenseLayer(incoming, 2000, W=weights[0], b=biases[0], nonlinearity=sigmoid, name='fc1')
    l_2 = DenseLayer(l_1, 1000, W=weights[1], b=biases[1], nonlinearity=sigmoid, name='fc2')
    l_3 = DenseLayer(l_2, 500, W=weights[2], b=biases[2], nonlinearity=sigmoid, name='fc3')
    l_4 = DenseLayer(l_3, 50, W=weights[3], b=biases[3], nonlinearity=linear, name='encoder')
    return l_4
audio_visual_runner.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def create_pretrained_encoder(weights, biases, incoming):
    l_1 = DenseLayer(incoming, 2000, W=weights[0], b=biases[0], nonlinearity=sigmoid, name='fc1')
    l_2 = DenseLayer(l_1, 1000, W=weights[1], b=biases[1], nonlinearity=sigmoid, name='fc2')
    l_3 = DenseLayer(l_2, 500, W=weights[2], b=biases[2], nonlinearity=sigmoid, name='fc3')
    l_4 = DenseLayer(l_3, 50, W=weights[3], b=biases[3], nonlinearity=linear, name='encoder')
    return l_4
avletters_convae_bn.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def create_model(incoming, options):
    conv_num_filters1 = 100
    conv_num_filters2 = 150
    conv_num_filters3 = 200
    filter_size1 = 5
    filter_size2 = 5
    filter_size3 = 3
    pool_size = 2
    encode_size = options['BOTTLENECK']
    dense_mid_size = options['DENSE']
    pad_in = 'valid'
    pad_out = 'full'
    scaled_tanh = create_scaled_tanh()

    conv2d1 = Conv2DLayer(incoming, num_filters=conv_num_filters1, filter_size=filter_size1, pad=pad_in, name='conv2d1', nonlinearity=scaled_tanh)
    maxpool2d3 = MaxPool2DLayer(conv2d1, pool_size=pool_size, name='maxpool2d3')
    bn2 = BatchNormLayer(maxpool2d3, name='batchnorm2')
    conv2d4 = Conv2DLayer(bn2, num_filters=conv_num_filters2, filter_size=filter_size2, pad=pad_in, name='conv2d4', nonlinearity=scaled_tanh)
    maxpool2d6 = MaxPool2DLayer(conv2d4, pool_size=pool_size, name='maxpool2d6', pad=(1,0))
    bn3 = BatchNormLayer(maxpool2d6, name='batchnorm3')
    conv2d7 = Conv2DLayer(bn3, num_filters=conv_num_filters3, filter_size=filter_size3, pad=pad_in, name='conv2d7', nonlinearity=scaled_tanh)
    reshape9 = ReshapeLayer(conv2d7, shape=([0], -1), name='reshape9')  # 3000
    reshape9_output = reshape9.output_shape[1]
    bn8 = BatchNormLayer(reshape9, name='batchnorm8')
    dense10 = DenseLayer(bn8, num_units=dense_mid_size, name='dense10', nonlinearity=scaled_tanh)
    bn11 = BatchNormLayer(dense10, name='batchnorm11')
    bottleneck = DenseLayer(bn11, num_units=encode_size, name='bottleneck', nonlinearity=linear)
    # print_network(bottleneck)
    dense12 = DenseLayer(bottleneck, num_units=dense_mid_size, W=bottleneck.W.T, name='dense12', nonlinearity=linear)
    dense13 = DenseLayer(dense12, num_units=reshape9_output, W=dense10.W.T, nonlinearity=scaled_tanh, name='dense13')
    reshape14 = ReshapeLayer(dense13, shape=([0], conv_num_filters3, 3, 5), name='reshape14')  # 32 x 4 x 7
    deconv2d19 = Deconv2DLayer(reshape14, conv2d7.input_shape[1], conv2d7.filter_size, stride=conv2d7.stride,
                               W=conv2d7.W, flip_filters=not conv2d7.flip_filters, name='deconv2d19', nonlinearity=scaled_tanh)
    upscale2d16 = Upscale2DLayer(deconv2d19, scale_factor=pool_size, name='upscale2d16')
    deconv2d17 = Deconv2DLayer(upscale2d16, conv2d4.input_shape[1], conv2d4.filter_size, stride=conv2d4.stride,
                               W=conv2d4.W, flip_filters=not conv2d4.flip_filters, name='deconv2d17', nonlinearity=scaled_tanh)
    upscale2d18 = Upscale2DLayer(deconv2d17, scale_factor=pool_size, name='upscale2d18')
    deconv2d19 = Deconv2DLayer(upscale2d18, conv2d1.input_shape[1], conv2d1.filter_size, stride=conv2d1.stride,
                               crop=(1, 0), W=conv2d1.W, flip_filters=not conv2d1.flip_filters, name='deconv2d14', nonlinearity=scaled_tanh)
    reshape20 = ReshapeLayer(deconv2d19, ([0], -1), name='reshape20')
    return reshape20, bottleneck
adenet_v6.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def create_pretrained_encoder(weights, biases, names, incoming):
    l_1 = DenseLayer(incoming, 2000, W=weights[0], b=biases[0], nonlinearity=sigmoid, name=names[0])
    l_2 = DenseLayer(l_1, 1000, W=weights[1], b=biases[1], nonlinearity=sigmoid, name=names[1])
    l_3 = DenseLayer(l_2, 500, W=weights[2], b=biases[2], nonlinearity=sigmoid, name=names[2])
    l_4 = DenseLayer(l_3, 50, W=weights[3], b=biases[3], nonlinearity=linear, name=names[3])
    return l_4
adenet_v4.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def create_pretrained_encoder(weights, biases, incoming):
    l_1 = DenseLayer(incoming, 2000, W=weights[0], b=biases[0], nonlinearity=sigmoid, name='fc1')
    l_2 = DenseLayer(l_1, 1000, W=weights[1], b=biases[1], nonlinearity=sigmoid, name='fc2')
    l_3 = DenseLayer(l_2, 500, W=weights[2], b=biases[2], nonlinearity=sigmoid, name='fc3')
    l_4 = DenseLayer(l_3, 50, W=weights[3], b=biases[3], nonlinearity=linear, name='bottleneck')
    return l_4
baseline_end2end.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def create_pretrained_encoder(weights, biases, incoming):
    l_1 = DenseLayer(incoming, 2000, W=weights[0], b=biases[0], nonlinearity=sigmoid, name='fc1')
    l_2 = DenseLayer(l_1, 1000, W=weights[1], b=biases[1], nonlinearity=sigmoid, name='fc2')
    l_3 = DenseLayer(l_2, 500, W=weights[2], b=biases[2], nonlinearity=sigmoid, name='fc3')
    l_4 = DenseLayer(l_3, 50, W=weights[3], b=biases[3], nonlinearity=linear, name='bottleneck')
    return l_4
adenet_v5.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def create_pretrained_encoder(weights, biases, names, incoming):
    l_1 = DenseLayer(incoming, 2000, W=weights[0], b=biases[0], nonlinearity=sigmoid, name=names[0])
    l_2 = DenseLayer(l_1, 1000, W=weights[1], b=biases[1], nonlinearity=sigmoid, name=names[1])
    l_3 = DenseLayer(l_2, 500, W=weights[2], b=biases[2], nonlinearity=sigmoid, name=names[2])
    l_4 = DenseLayer(l_3, 50, W=weights[3], b=biases[3], nonlinearity=linear, name=names[3])
    return l_4
adenet_v3.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def create_pretrained_encoder(weights, biases, names, incoming):
    l_1 = DenseLayer(incoming, 2000, W=weights[0], b=biases[0], nonlinearity=sigmoid, name=names[0])
    l_2 = DenseLayer(l_1, 1000, W=weights[1], b=biases[1], nonlinearity=sigmoid, name=names[1])
    l_3 = DenseLayer(l_2, 500, W=weights[2], b=biases[2], nonlinearity=sigmoid, name=names[2])
    l_4 = DenseLayer(l_3, 50, W=weights[3], b=biases[3], nonlinearity=linear, name=names[3])
    return l_4
adenet_v1.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def create_pretrained_encoder(weights, biases, incoming):
    l_1 = DenseLayer(incoming, 2000, W=weights[0], b=biases[0], nonlinearity=sigmoid, name='fc1')
    l_2 = DenseLayer(l_1, 1000, W=weights[1], b=biases[1], nonlinearity=sigmoid, name='fc2')
    l_3 = DenseLayer(l_2, 500, W=weights[2], b=biases[2], nonlinearity=sigmoid, name='fc3')
    l_4 = DenseLayer(l_3, 50, W=weights[3], b=biases[3], nonlinearity=linear, name='bottleneck')
    return l_4
FlowNetCommon.py 文件源码 项目:theano-flownet 作者: Ignotus 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def upsample(input_layer, **kwargs):
    return Deconv2DLayer(
        input_layer, num_filters=2, filter_size=4, stride=2,
        crop=1, b=None, nonlinearity=linear, flip_filters=True, **kwargs)


问题


面经


文章

微信
公众号

扫码关注公众号