python类tanh()的实例源码

deterministic_mlp_policy.py 文件源码 项目:third_person_im 作者: bstadie 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def __init__(
            self,
            env_spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=NL.rectify,
            hidden_W_init=LI.HeUniform(),
            hidden_b_init=LI.Constant(0.),
            output_nonlinearity=NL.tanh,
            output_W_init=LI.Uniform(-3e-3, 3e-3),
            output_b_init=LI.Uniform(-3e-3, 3e-3),
            bn=False):
        Serializable.quick_init(self, locals())

        l_obs = L.InputLayer(shape=(None, env_spec.observation_space.flat_dim))

        l_hidden = l_obs
        if bn:
            l_hidden = batch_norm(l_hidden)

        for idx, size in enumerate(hidden_sizes):
            l_hidden = L.DenseLayer(
                l_hidden,
                num_units=size,
                W=hidden_W_init,
                b=hidden_b_init,
                nonlinearity=hidden_nonlinearity,
                name="h%d" % idx
            )
            if bn:
                l_hidden = batch_norm(l_hidden)

        l_output = L.DenseLayer(
            l_hidden,
            num_units=env_spec.action_space.flat_dim,
            W=output_W_init,
            b=output_b_init,
            nonlinearity=output_nonlinearity,
            name="output"
        )

        # Note the deterministic=True argument. It makes sure that when getting
        # actions from single observations, we do not update params in the
        # batch normalization layers

        action_var = L.get_output(l_output, deterministic=True)
        self._output_layer = l_output

        self._f_actions = ext.compile_function([l_obs.input_var], action_var)

        super(DeterministicMLPPolicy, self).__init__(env_spec)
        LasagnePowered.__init__(self, [l_output])
sequence_labeling.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def build_recur_dropout(incoming1, incoming2, num_units, num_labels, mask, grad_clipping, num_filters, p):
    # Construct Bi-directional LSTM-CNNs-CRF with recurrent dropout.
    # first get some necessary dimensions or parameters
    conv_window = 3
    # shape = [batch, n-step, c_dim, char_length]
    # construct convolution layer
    # shape = [batch, n-step, c_filters, output_length]
    cnn_layer = ConvTimeStep1DLayer(incoming1, num_filters=num_filters, filter_size=conv_window, pad='full',
                                    nonlinearity=lasagne.nonlinearities.tanh, name='cnn')
    # infer the pool size for pooling (pool size should go through all time step of cnn)
    _, _, _, pool_size = cnn_layer.output_shape
    # construct max pool layer
    # shape = [batch, n-step, c_filters, 1]
    pool_layer = PoolTimeStep1DLayer(cnn_layer, pool_size=pool_size)
    # reshape: [batch, n-step, c_filters, 1] --> [batch, n-step, c_filters]
    output_cnn_layer = lasagne.layers.reshape(pool_layer, ([0], [1], [2]))

    # finally, concatenate the two incoming layers together.
    # shape = [batch, n-step, c_filter&w_dim]
    incoming = lasagne.layers.concat([output_cnn_layer, incoming2], axis=2)

    # dropout for incoming
    incoming = lasagne.layers.DropoutLayer(incoming, p=p, shared_axes=(1,))

    ingate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                          W_cell=lasagne.init.Uniform(range=0.1))
    outgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                           W_cell=lasagne.init.Uniform(range=0.1))
    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    forgetgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                              W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    # now use tanh for nonlinear function of cell, need to try pure linear cell
    cell_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        nonlinearity=nonlinearities.tanh)
    lstm_forward = LSTMLayer(incoming, num_units, mask_input=mask, grad_clipping=grad_clipping,
                             nonlinearity=nonlinearities.tanh, peepholes=False,
                             ingate=ingate_forward, outgate=outgate_forward,
                             forgetgate=forgetgate_forward, cell=cell_forward, p=p, name='forward')

    ingate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                           W_cell=lasagne.init.Uniform(range=0.1))
    outgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                            W_cell=lasagne.init.Uniform(range=0.1))
    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    forgetgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                               W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    # now use tanh for nonlinear function of cell, need to try pure linear cell
    cell_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                         nonlinearity=nonlinearities.tanh)
    lstm_backward = LSTMLayer(incoming, num_units, mask_input=mask, grad_clipping=grad_clipping,
                              nonlinearity=nonlinearities.tanh, peepholes=False, backwards=True,
                              ingate=ingate_backward, outgate=outgate_backward,
                              forgetgate=forgetgate_backward, cell=cell_backward, p=p, name='backward')

    # concatenate the outputs of forward and backward LSTMs to combine them.
    bi_lstm_cnn = lasagne.layers.concat([lstm_forward, lstm_backward], axis=2, name="bi-lstm")
    # shape = [batch, n-step, num_units]
    bi_lstm_cnn = lasagne.layers.DropoutLayer(bi_lstm_cnn, p=p, shared_axes=(1,))

    return ChainCRFLayer(bi_lstm_cnn, num_labels, mask_input=mask)
sent_classify.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def build_RNN(architec, layer_input, layer_mask, num_units, grad_clipping):
    def build_GRU(reset_input):
        resetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

        updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

        hiden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                            b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

        return GRULayer(layer_input, num_units, mask_input=layer_mask, grad_clipping=grad_clipping,
                        resetgate=resetgate, updategate=updategate, hidden_update=hiden_update,
                        reset_input=reset_input, only_return_final=True, p=0.5, name='GRU')

    def build_LSTM():
        ingate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                      W_cell=lasagne.init.Uniform(range=0.1))

        outgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                       W_cell=lasagne.init.Uniform(range=0.1))
        # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
        forgetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                          W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
        # now use tanh for nonlinear function of cell, need to try pure linear cell
        cell = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                    b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

        return LSTMLayer(layer_input, num_units, mask_input=layer_mask, grad_clipping=grad_clipping,
                         ingate=ingate, forgetgate=forgetgate, cell=cell, outgate=outgate,
                         peepholes=False, nonlinearity=nonlinearities.tanh,
                         only_return_final=True, p=0.5, name='LSTM')

    def build_SGRU():
        resetgate_hidden = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                         W_cell=lasagne.init.GlorotUniform())

        resetgate_input = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                W_cell=lasagne.init.GlorotUniform())

        updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                          W_cell=lasagne.init.GlorotUniform())

        hidden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                            b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

        return SGRULayer(layer_input, num_units, mask_input=layer_mask, grad_clipping=grad_clipping,
                         resetgate_input=resetgate_input, resetgate_hidden=resetgate_hidden,
                         updategate=updategate, hidden_update=hidden_update,
                         only_return_final=True, p=0.5, name='SGRU')

    if architec == 'gru0':
        return build_GRU(False)
    elif architec == 'gru1':
        return build_GRU(True)
    elif architec == 'lstm':
        return build_LSTM()
    elif architec == 'sgru':
        return build_SGRU()
    else:
        raise ValueError('unkown architecture: %s' % architec)
bi-rnn-cnn.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def build_std_dropout_gru(incoming1, incoming2, num_units, num_labels, mask, grad_clipping, num_filters, p,
                          reset_input):
    # Construct Bi-directional LSTM-CNNs-CRF with standard dropout.
    # first get some necessary dimensions or parameters
    conv_window = 3
    # shape = [batch, n-step, c_dim, char_length]
    incoming1 = lasagne.layers.DropoutLayer(incoming1, p=p)

    # construct convolution layer
    # shape = [batch, n-step, c_filters, output_length]
    cnn_layer = ConvTimeStep1DLayer(incoming1, num_filters=num_filters, filter_size=conv_window, pad='full',
                                    nonlinearity=lasagne.nonlinearities.tanh, name='cnn')
    # infer the pool size for pooling (pool size should go through all time step of cnn)
    _, _, _, pool_size = cnn_layer.output_shape
    # construct max pool layer
    # shape = [batch, n-step, c_filters, 1]
    pool_layer = PoolTimeStep1DLayer(cnn_layer, pool_size=pool_size)
    # reshape: [batch, n-step, c_filters, 1] --> [batch, n-step, c_filters]
    output_cnn_layer = lasagne.layers.reshape(pool_layer, ([0], [1], [2]))

    # finally, concatenate the two incoming layers together.
    # shape = [batch, n-step, c_filter&w_dim]
    incoming = lasagne.layers.concat([output_cnn_layer, incoming2], axis=2)

    # dropout for incoming
    incoming = lasagne.layers.DropoutLayer(incoming, p=0.2)

    resetgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    updategate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    hidden_update_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                 W_cell=None, nonlinearity=nonlinearities.tanh)
    gru_forward = GRULayer(incoming, num_units, mask_input=mask, resetgate=resetgate_forward,
                           updategate=updategate_forward, hidden_update=hidden_update_forward,
                           grad_clipping=grad_clipping, reset_input=reset_input, name='forward')

    resetgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    updategate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    hidden_update_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                  W_cell=None, nonlinearity=nonlinearities.tanh)
    gru_backward = GRULayer(incoming, num_units, mask_input=mask, backwards=True, resetgate=resetgate_backward,
                            updategate=updategate_backward, hidden_update=hidden_update_backward,
                            grad_clipping=grad_clipping, reset_input=reset_input, name='backward')

    # concatenate the outputs of forward and backward LSTMs to combine them.
    bi_gru_cnn = lasagne.layers.concat([gru_forward, gru_backward], axis=2, name="bi-gru")

    bi_gru_cnn = lasagne.layers.DropoutLayer(bi_gru_cnn, p=p)

    # reshape bi-rnn-cnn to [batch * max_length, num_units]
    bi_gru_cnn = lasagne.layers.reshape(bi_gru_cnn, (-1, [2]))

    # construct output layer (dense layer with softmax)
    layer_output = lasagne.layers.DenseLayer(bi_gru_cnn, num_units=num_labels, nonlinearity=nonlinearities.softmax,
                                             name='softmax')

    return layer_output
bi-rnn-cnn.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def build_std_dropout_sgru(incoming1, incoming2, num_units, num_labels, mask, grad_clipping, num_filters, p):
    # Construct Bi-directional LSTM-CNNs-CRF with standard dropout.
    # first get some necessary dimensions or parameters
    conv_window = 3
    # shape = [batch, n-step, c_dim, char_length]
    incoming1 = lasagne.layers.DropoutLayer(incoming1, p=p)

    # construct convolution layer
    # shape = [batch, n-step, c_filters, output_length]
    cnn_layer = ConvTimeStep1DLayer(incoming1, num_filters=num_filters, filter_size=conv_window, pad='full',
                                    nonlinearity=lasagne.nonlinearities.tanh, name='cnn')
    # infer the pool size for pooling (pool size should go through all time step of cnn)
    _, _, _, pool_size = cnn_layer.output_shape
    # construct max pool layer
    # shape = [batch, n-step, c_filters, 1]
    pool_layer = PoolTimeStep1DLayer(cnn_layer, pool_size=pool_size)
    # reshape: [batch, n-step, c_filters, 1] --> [batch, n-step, c_filters]
    output_cnn_layer = lasagne.layers.reshape(pool_layer, ([0], [1], [2]))

    # finally, concatenate the two incoming layers together.
    # shape = [batch, n-step, c_filter&w_dim]
    incoming = lasagne.layers.concat([output_cnn_layer, incoming2], axis=2)

    # dropout for incoming
    incoming = lasagne.layers.DropoutLayer(incoming, p=0.2)

    resetgate_input_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    resetgate_hidden_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    updategate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    hidden_update_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                 W_cell=None, nonlinearity=nonlinearities.tanh)
    sgru_forward = SGRULayer(incoming, num_units, mask_input=mask,
                             resetgate_input=resetgate_input_forward, resetgate_hidden=resetgate_hidden_forward,
                             updategate=updategate_forward, hidden_update=hidden_update_forward,
                             grad_clipping=grad_clipping, name='forward')

    resetgate_input_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    resetgate_hidden_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    updategate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    hidden_update_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                  W_cell=None, nonlinearity=nonlinearities.tanh)
    sgru_backward = SGRULayer(incoming, num_units, mask_input=mask, backwards=True,
                              resetgate_input=resetgate_input_backward, resetgate_hidden=resetgate_hidden_backward,
                              updategate=updategate_backward, hidden_update=hidden_update_backward,
                              grad_clipping=grad_clipping, name='backward')

    # concatenate the outputs of forward and backward LSTMs to combine them.
    bi_sgru_cnn = lasagne.layers.concat([sgru_forward, sgru_backward], axis=2, name="bi-sgru")

    bi_sgru_cnn = lasagne.layers.DropoutLayer(bi_sgru_cnn, p=p)

    # reshape bi-rnn-cnn to [batch * max_length, num_units]
    bi_sgru_cnn = lasagne.layers.reshape(bi_sgru_cnn, (-1, [2]))

    # construct output layer (dense layer with softmax)
    layer_output = lasagne.layers.DenseLayer(bi_sgru_cnn, num_units=num_labels, nonlinearity=nonlinearities.softmax,
                                             name='softmax')

    return layer_output
bi-rnn-cnn.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def build_recur_dropout_gru(incoming1, incoming2, num_units, num_labels, mask, grad_clipping, num_filters, p,
                            reset_input):
    # Construct Bi-directional LSTM-CNNs-CRF with recurrent dropout.
    # first get some necessary dimensions or parameters
    conv_window = 3
    # shape = [batch, n-step, c_dim, char_length]
    # construct convolution layer
    # shape = [batch, n-step, c_filters, output_length]
    cnn_layer = ConvTimeStep1DLayer(incoming1, num_filters=num_filters, filter_size=conv_window, pad='full',
                                    nonlinearity=lasagne.nonlinearities.tanh, name='cnn')
    # infer the pool size for pooling (pool size should go through all time step of cnn)
    _, _, _, pool_size = cnn_layer.output_shape
    # construct max pool layer
    # shape = [batch, n-step, c_filters, 1]
    pool_layer = PoolTimeStep1DLayer(cnn_layer, pool_size=pool_size)
    # reshape: [batch, n-step, c_filters, 1] --> [batch, n-step, c_filters]
    output_cnn_layer = lasagne.layers.reshape(pool_layer, ([0], [1], [2]))

    # finally, concatenate the two incoming layers together.
    # shape = [batch, n-step, c_filter&w_dim]
    incoming = lasagne.layers.concat([output_cnn_layer, incoming2], axis=2)

    # dropout for incoming
    incoming = lasagne.layers.DropoutLayer(incoming, p=0.2, shared_axes=(1,))

    resetgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    updategate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    hidden_update_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                 W_cell=None, nonlinearity=nonlinearities.tanh)
    gru_forward = GRULayer(incoming, num_units, mask_input=mask, resetgate=resetgate_forward,
                           updategate=updategate_forward, hidden_update=hidden_update_forward,
                           grad_clipping=grad_clipping, reset_input=reset_input, p=p, name='forward')

    resetgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    updategate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    hidden_update_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                  W_cell=None, nonlinearity=nonlinearities.tanh)
    gru_backward = GRULayer(incoming, num_units, mask_input=mask, backwards=True, resetgate=resetgate_backward,
                            updategate=updategate_backward, hidden_update=hidden_update_backward,
                            grad_clipping=grad_clipping, reset_input=reset_input, p=p, name='backward')

    # concatenate the outputs of forward and backward LSTMs to combine them.
    bi_gru_cnn = lasagne.layers.concat([gru_forward, gru_backward], axis=2, name="bi-gru")
    # shape = [batch, n-step, num_units]
    bi_gru_cnn = lasagne.layers.DropoutLayer(bi_gru_cnn, p=p, shared_axes=(1,))

    # reshape bi-rnn-cnn to [batch * max_length, num_units]
    bi_gru_cnn = lasagne.layers.reshape(bi_gru_cnn, (-1, [2]))

    # construct output layer (dense layer with softmax)
    layer_output = lasagne.layers.DenseLayer(bi_gru_cnn, num_units=num_labels, nonlinearity=nonlinearities.softmax,
                                             name='softmax')

    return layer_output
bi-rnn-cnn.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def build_recur_dropout_sgru(incoming1, incoming2, num_units, num_labels, mask, grad_clipping, num_filters, p):
    # Construct Bi-directional LSTM-CNNs-CRF with recurrent dropout.
    # first get some necessary dimensions or parameters
    conv_window = 3
    # shape = [batch, n-step, c_dim, char_length]
    # construct convolution layer
    # shape = [batch, n-step, c_filters, output_length]
    cnn_layer = ConvTimeStep1DLayer(incoming1, num_filters=num_filters, filter_size=conv_window, pad='full',
                                    nonlinearity=lasagne.nonlinearities.tanh, name='cnn')
    # infer the pool size for pooling (pool size should go through all time step of cnn)
    _, _, _, pool_size = cnn_layer.output_shape
    # construct max pool layer
    # shape = [batch, n-step, c_filters, 1]
    pool_layer = PoolTimeStep1DLayer(cnn_layer, pool_size=pool_size)
    # reshape: [batch, n-step, c_filters, 1] --> [batch, n-step, c_filters]
    output_cnn_layer = lasagne.layers.reshape(pool_layer, ([0], [1], [2]))

    # finally, concatenate the two incoming layers together.
    # shape = [batch, n-step, c_filter&w_dim]
    incoming = lasagne.layers.concat([output_cnn_layer, incoming2], axis=2)

    # dropout for incoming
    incoming = lasagne.layers.DropoutLayer(incoming, p=0.2, shared_axes=(1,))

    resetgate_input_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    resetgate_hidden_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    updategate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    hidden_update_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                 W_cell=None, nonlinearity=nonlinearities.tanh)
    sgru_forward = SGRULayer(incoming, num_units, mask_input=mask,
                             resetgate_input=resetgate_input_forward, resetgate_hidden=resetgate_hidden_forward,
                             updategate=updategate_forward, hidden_update=hidden_update_forward,
                             grad_clipping=grad_clipping, p=p, name='forward')

    resetgate_input_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    resetgate_hidden_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    updategate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    hidden_update_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                  W_cell=None, nonlinearity=nonlinearities.tanh)
    sgru_backward = SGRULayer(incoming, num_units, mask_input=mask, backwards=True,
                              resetgate_input=resetgate_input_backward, resetgate_hidden=resetgate_hidden_backward,
                              updategate=updategate_backward, hidden_update=hidden_update_backward,
                              grad_clipping=grad_clipping, p=p, name='backward')

    # concatenate the outputs of forward and backward LSTMs to combine them.
    bi_sgru_cnn = lasagne.layers.concat([sgru_forward, sgru_backward], axis=2, name="bi-sgru")
    # shape = [batch, n-step, num_units]
    bi_sgru_cnn = lasagne.layers.DropoutLayer(bi_sgru_cnn, p=p, shared_axes=(1,))

    # reshape bi-rnn-cnn to [batch * max_length, num_units]
    bi_sgru_cnn = lasagne.layers.reshape(bi_sgru_cnn, (-1, [2]))

    # construct output layer (dense layer with softmax)
    layer_output = lasagne.layers.DenseLayer(bi_sgru_cnn, num_units=num_labels, nonlinearity=nonlinearities.softmax,
                                             name='softmax')

    return layer_output
custom_layers.py 文件源码 项目:MachineComprehension 作者: sa-j 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, incoming, num_units, ingate=Gate(), forgetgate=Gate(),
                 cell=Gate(W_cell=None, nonlinearity=nonlinearities.tanh), outgate=Gate(),
                 nonlinearity=nonlinearities.tanh, cell_init=init.Constant(0.), hid_init=init.Constant(0.),
                 backwards=False, learn_init=False, peepholes=True, gradient_steps=-1, grad_clipping=0,
                 precompute_input=True, mask_input=None,
                 encoder_mask_input=None, attention=False, word_by_word=False, **kwargs):
        super(CustomLSTMDecoder, self).__init__(incoming, num_units, ingate, forgetgate, cell, outgate, nonlinearity,
                                                cell_init, hid_init, backwards, learn_init, peepholes, gradient_steps,
                                                grad_clipping, False, precompute_input, mask_input, True,
                                                **kwargs)
        self.attention = attention
        self.word_by_word = word_by_word
        # encoder mask
        self.encoder_mask_incoming_index = -1
        if encoder_mask_input is not None:
            self.input_layers.append(encoder_mask_input)
            self.input_shapes.append(encoder_mask_input.output_shape)
            self.encoder_mask_incoming_index = len(self.input_layers) - 1
        # check encoder
        if not isinstance(self.cell_init, CustomLSTMEncoder) \
                or self.num_units != self.cell_init.num_units:
            raise ValueError('cell_init must be CustomLSTMEncoder'
                             ' and num_units should equal')
        self.r_init = None
        self.r_init = self.add_param(init.Constant(0.),
                                     (1, num_units), name="r_init",
                                     trainable=False, regularizable=False)
        if self.word_by_word:
            # rewrites
            self.attention = True
        if self.attention:
            if not isinstance(encoder_mask_input, lasagne.layers.Layer):
                raise ValueError('Attention mechnism needs encoder mask layer')
            # initializes attention weights
            self.W_y_attend = self.add_param(init.Normal(0.1), (num_units, num_units), 'V_pointer')
            self.W_h_attend = self.add_param(init.Normal(0.1), (num_units, num_units), 'W_h_attend')
            # doesn't need transpose
            self.w_attend = self.add_param(init.Normal(0.1), (num_units, 1), 'v_pointer')
            self.W_p_attend = self.add_param(init.Normal(0.1), (num_units, num_units), 'W_p_attend')
            self.W_x_attend = self.add_param(init.Normal(0.1), (num_units, num_units), 'W_x_attend')
            if self.word_by_word:
                self.W_r_attend = self.add_param(init.Normal(0.1), (num_units, num_units), 'W_r_attend')
                self.W_t_attend = self.add_param(init.Normal(0.1), (num_units, num_units), 'W_t_attend')
began_network.py 文件源码 项目:began 作者: davidtellez 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def network_generator(self, input_var, network_weights=None):

        # Input layer
        layers = []
        n_blocks = int(np.log2(self.input_size / 8)) + 1  # end up with 8x8 output
        layers.append(InputLayer(shape=(None, self.hidden_size), input_var=input_var, name='generator/input'))

        # Dense layer up (from h to n*8*8)
        layers.append(dense_layer(layers[-1], n_units=(8 * 8 * self.n_filters), name='generator/dense%d' % len(layers), network_weights=network_weights))
        layers.append(ReshapeLayer(layers[-1], (-1, self.n_filters, 8, 8), name='generator/reshape%d' % len(layers)))

        # Convolutional blocks (decoder)
        for i_block in range(1, n_blocks+1):
            layers.append(conv_layer(layers[-1], n_filters=self.n_filters, stride=1, name='generator/conv%d' % len(layers), network_weights=network_weights))
            layers.append(conv_layer(layers[-1], n_filters=self.n_filters, stride=1, name='generator/conv%d' % len(layers), network_weights=network_weights))
            if i_block != n_blocks:
                layers.append(Upscale2DLayer(layers[-1], scale_factor=2, name='generator/upsample%d' % len(layers)))

        # Final layer (make sure input images are in the range [-1, 1] if tanh used)
        layers.append(conv_layer(layers[-1], n_filters=3, stride=1, name='generator/output', network_weights=network_weights, nonlinearity=sigmoid))

        # Network in dictionary form
        network = {layer.name: layer for layer in layers}

        return network

    # def network_generator_alt(self, input_var, network_weights=None):
    #
    #     # Input layer
    #     layers = []
    #     n_blocks = int(np.log2(self.input_size / 8)) + 1  # end up with 8x8 output
    #     layers.append(InputLayer(shape=(None, self.hidden_size), input_var=input_var, name='generator/input'))
    #
    #     # Dense layer up (from h to n*8*8)
    #     layers.append(dense_layer(layers[-1], n_units=(8 * 8 * self.n_filters*n_blocks), name='generator/dense%d' % len(layers), network_weights=network_weights, nonlinearity=elu, bn=True))
    #     layers.append(ReshapeLayer(layers[-1], (-1, self.n_filters*n_blocks, 8, 8), name='generator/reshape%d' % len(layers)))
    #
    #     # Convolutional blocks (decoder)
    #     for i_block in range(1, n_blocks+1)[::-1]:
    #         # layers.append(conv_layer(layers[-1], n_filters=self.n_filters*(i_block), stride=1, name='generator/conv%d' % len(layers), network_weights=network_weights, bn=True))
    #         # layers.append(conv_layer(layers[-1], n_filters=self.n_filters*(i_block), stride=1, name='generator/conv%d' % len(layers), network_weights=network_weights, bn=True))
    #         if i_block != 1:
    #             layers.append(transposed_conv_layer(layers[-1], n_filters=self.n_filters*(i_block-1), stride=2, name='generator/upsample%d' % len(layers),
    #                                                 output_size=8*2**(n_blocks-i_block+1), network_weights=network_weights, nonlinearity=elu, bn=True))
    #
    #     # Final layer (make sure input images are in the range [-1, 1]
    #     layers.append(conv_layer(layers[-1], n_filters=3, stride=1, name='generator/output', network_weights=network_weights, nonlinearity=tanh, bn=False))
    #
    #     # Network in dictionary form
    #     network = {layer.name: layer for layer in layers}
    #
    #     return network
deterministic_mlp_policy.py 文件源码 项目:rllabplusplus 作者: shaneshixiang 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(
            self,
            env_spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=NL.rectify,
            hidden_W_init=LI.HeUniform(),
            hidden_b_init=LI.Constant(0.),
            output_nonlinearity=NL.tanh,
            output_W_init=LI.Uniform(-3e-3, 3e-3),
            output_b_init=LI.Uniform(-3e-3, 3e-3),
            bn=False):
        Serializable.quick_init(self, locals())

        l_obs = L.InputLayer(shape=(None, env_spec.observation_space.flat_dim))

        l_hidden = l_obs
        if bn:
            l_hidden = batch_norm(l_hidden)

        for idx, size in enumerate(hidden_sizes):
            l_hidden = L.DenseLayer(
                l_hidden,
                num_units=size,
                W=hidden_W_init,
                b=hidden_b_init,
                nonlinearity=hidden_nonlinearity,
                name="h%d" % idx
            )
            if bn:
                l_hidden = batch_norm(l_hidden)

        l_output = L.DenseLayer(
            l_hidden,
            num_units=env_spec.action_space.flat_dim,
            W=output_W_init,
            b=output_b_init,
            nonlinearity=output_nonlinearity,
            name="output"
        )

        # Note the deterministic=True argument. It makes sure that when getting
        # actions from single observations, we do not update params in the
        # batch normalization layers

        action_var = L.get_output(l_output, deterministic=True)
        self._output_layer = l_output

        self._f_actions = ext.compile_function([l_obs.input_var], action_var)

        super(DeterministicMLPPolicy, self).__init__(env_spec)
        LasagnePowered.__init__(self, [l_output])
networks.py 文件源码 项目:LasagneNLP 作者: XuezheMax 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_BiLSTM(incoming, num_units, mask=None, grad_clipping=0, precompute_input=True, peepholes=False, dropout=True,
                 in_to_out=False):
    # construct the forward and backward rnns. Now, Ws are initialized by Glorot initializer with default arguments.
    # Need to try other initializers for specific tasks.

    # dropout for incoming
    if dropout:
        incoming = lasagne.layers.DropoutLayer(incoming, p=0.5)

    ingate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                          W_cell=lasagne.init.Uniform(range=0.1))
    outgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                           W_cell=lasagne.init.Uniform(range=0.1))
    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    forgetgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                              W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    # now use tanh for nonlinear function of cell, need to try pure linear cell
    cell_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        nonlinearity=nonlinearities.tanh)
    lstm_forward = lasagne.layers.LSTMLayer(incoming, num_units, mask_input=mask, grad_clipping=grad_clipping,
                                            nonlinearity=nonlinearities.tanh, peepholes=peepholes,
                                            precompute_input=precompute_input,
                                            ingate=ingate_forward, outgate=outgate_forward,
                                            forgetgate=forgetgate_forward, cell=cell_forward, name='forward')

    ingate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                           W_cell=lasagne.init.Uniform(range=0.1))
    outgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                            W_cell=lasagne.init.Uniform(range=0.1))
    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    forgetgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                               W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    # now use tanh for nonlinear function of cell, need to try pure linear cell
    cell_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                         nonlinearity=nonlinearities.tanh)
    lstm_backward = lasagne.layers.LSTMLayer(incoming, num_units, mask_input=mask, grad_clipping=grad_clipping,
                                             nonlinearity=nonlinearities.tanh, peepholes=peepholes,
                                             precompute_input=precompute_input, backwards=True,
                                             ingate=ingate_backward, outgate=outgate_backward,
                                             forgetgate=forgetgate_backward, cell=cell_backward, name='backward')

    # concatenate the outputs of forward and backward RNNs to combine them.
    concat = lasagne.layers.concat([lstm_forward, lstm_backward], axis=2, name="bi-lstm")

    # dropout for output
    if dropout:
        concat = lasagne.layers.DropoutLayer(concat, p=0.5)

    if in_to_out:
        concat = lasagne.layers.concat([concat, incoming], axis=2)

    # the shape of BiRNN output (concat) is (batch_size, input_length, 2 * num_hidden_units)
    return concat
networks.py 文件源码 项目:LasagneNLP 作者: XuezheMax 项目源码 文件源码 阅读 74 收藏 0 点赞 0 评论 0
def build_BiGRU(incoming, num_units, mask=None, grad_clipping=0, precompute_input=True, dropout=True, in_to_out=False):
    # construct the forward and backward grus. Now, Ws are initialized by Glorot initializer with default arguments.
    # Need to try other initializers for specific tasks.

    # dropout for incoming
    if dropout:
        incoming = lasagne.layers.DropoutLayer(incoming, p=0.5)

    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    resetgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                             W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    updategate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                              W_cell=lasagne.init.Uniform(range=0.1))
    # now use tanh for nonlinear function of hidden gate
    hidden_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                          nonlinearity=nonlinearities.tanh)
    gru_forward = lasagne.layers.GRULayer(incoming, num_units, mask_input=mask, grad_clipping=grad_clipping,
                                          precompute_input=precompute_input,
                                          resetgate=resetgate_forward, updategate=updategate_forward,
                                          hidden_update=hidden_forward, name='forward')

    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    resetgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                              W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    updategate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                               W_cell=lasagne.init.Uniform(range=0.1))
    # now use tanh for nonlinear function of hidden gate
    hidden_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                           nonlinearity=nonlinearities.tanh)
    gru_backward = lasagne.layers.GRULayer(incoming, num_units, mask_input=mask, grad_clipping=grad_clipping,
                                           precompute_input=precompute_input, backwards=True,
                                           resetgate=resetgate_backward, updategate=updategate_backward,
                                           hidden_update=hidden_backward, name='backward')

    # concatenate the outputs of forward and backward GRUs to combine them.
    concat = lasagne.layers.concat([gru_forward, gru_backward], axis=2, name="bi-gru")

    # dropout for output
    if dropout:
        concat = lasagne.layers.DropoutLayer(concat, p=0.5)

    if in_to_out:
        concat = lasagne.layers.concat([concat, incoming], axis=2)

    # the shape of BiRNN output (concat) is (batch_size, input_length, 2 * num_hidden_units)
    return concat
MyLayers.py 文件源码 项目:CIKM2017 作者: MovieFIB 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(
        self, incomings, num_units,
        W_g=init.Normal(0.1),
        W_h=init.Normal(0.1),
        W_v=init.Normal(0.1),
        W_s=init.Normal(0.1),
        W_p=init.Normal(0.1),
        nonlinearity=nonlinearities.tanh,
        nonlinearity_atten=nonlinearities.softmax,
        **kwargs
    ):
        super(AttenLayer, self).__init__(incomings, **kwargs)
        self.batch_size = self.input_shapes[0][0]  # None
        num_inputs = self.input_shapes[2][1]  # k
        feature_dim = self.input_shapes[0][1]  # d
        self.num_units = num_units
        self.nonlinearity = nonlinearity
        self.nonlinearity_atten = nonlinearity_atten
        self.W_h_to_attenGate = self.add_param(
            W_h, (num_inputs, 1),
            name='W_h_to_atten'
        )
        self.W_g_to_attenGate = self.add_param(
            W_g,
            (feature_dim, num_inputs),
            name='W_g_to_atten'
        )
        self.W_v_to_attenGate = self.add_param(
            W_v,
            (feature_dim, num_inputs),
            name='W_v_to_atten'
        )
        self.W_s_to_attenGate = self.add_param(
            W_s,
            (feature_dim, num_inputs),
            name='W_s_to_atten'
        )
        self.W_p = self.add_param(
            W_p,
            (feature_dim, num_units),
            name='W_p_to_atten'
        )
        self.num_inputs = num_inputs
bidnn.py 文件源码 项目:BiDNN 作者: v-v 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, conf):
        self.conf = conf

        if self.conf.act == "linear":
            self.conf.act = linear
        elif self.conf.act == "sigmoid":
            self.conf.act = sigmoid
        elif self.conf.act == "relu":
            self.conf.act = rectify
        elif self.conf.act == "tanh":
            self.conf.act = tanh
        else:
            raise ValueError("Unknown activation function", self.conf.act)

        input_var_first   = T.matrix('inputs1')
        input_var_second  = T.matrix('inputs2')
        target_var        = T.matrix('targets')

        # create network        
        self.autoencoder, encoder_first, encoder_second = self.__create_toplogy__(input_var_first, input_var_second)

        self.out = get_output(self.autoencoder)

        loss = squared_error(self.out, target_var)
        loss = loss.mean()

        params = get_all_params(self.autoencoder, trainable=True)
        updates = nesterov_momentum(loss, params, learning_rate=self.conf.lr, momentum=self.conf.momentum)

        # training function
        self.train_fn = theano.function([input_var_first, input_var_second, target_var], loss, updates=updates)

        # fuction to reconstruct
        test_reconstruction = get_output(self.autoencoder, deterministic=True)
        self.reconstruction_fn = theano.function([input_var_first, input_var_second], test_reconstruction)

        # encoding function
        test_encode = get_output([encoder_first, encoder_second], deterministic=True)
        self.encoding_fn = theano.function([input_var_first, input_var_second], test_encode)

        # utils
        blas = lambda name, ndarray: scipy.linalg.get_blas_funcs((name,), (ndarray,))[0]
        self.blas_nrm2 = blas('nrm2', np.array([], dtype=float))
        self.blas_scal = blas('scal', np.array([], dtype=float))

        # load weights if necessary
        if self.conf.load_model is not None:
            self.load_model()
CPO_point_gather.py 文件源码 项目:cpo 作者: jachiam 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def run_task(*_):
        trpo_stepsize = 0.01
        trpo_subsample_factor = 0.2

        env = PointGatherEnv(apple_reward=10,bomb_cost=1,n_apples=2, activity_range=6)

        policy = GaussianMLPPolicy(env.spec,
                    hidden_sizes=(64,32)
                 )

        baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args={
                    'hidden_sizes': (64,32),
                    'hidden_nonlinearity': NL.tanh,
                    'learn_std':False,
                    'step_size':trpo_stepsize,
                    'optimizer':ConjugateGradientOptimizer(subsample_factor=trpo_subsample_factor)
                    }
        )

        safety_baseline = GaussianMLPBaseline(
            env_spec=env.spec,
            regressor_args={
                    'hidden_sizes': (64,32),
                    'hidden_nonlinearity': NL.tanh,
                    'learn_std':False,
                    'step_size':trpo_stepsize,
                    'optimizer':ConjugateGradientOptimizer(subsample_factor=trpo_subsample_factor)
                    },
            target_key='safety_returns',
            )

        safety_constraint = GatherSafetyConstraint(max_value=0.1, baseline=safety_baseline)



        algo = CPO(
            env=env,
            policy=policy,
            baseline=baseline,
            safety_constraint=safety_constraint,
            safety_gae_lambda=1,
            batch_size=50000,
            max_path_length=15,
            n_itr=100,
            gae_lambda=0.95,
            discount=0.995,
            step_size=trpo_stepsize,
            optimizer_args={'subsample_factor':trpo_subsample_factor},
            #plot=True,
        )

        algo.train()
deterministic_mlp_policy.py 文件源码 项目:gail-driver 作者: sisl 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(
            self,
            env_spec,
            hidden_sizes=(32, 32),
            hidden_nonlinearity=NL.rectify,
            hidden_W_init=LI.HeUniform(),
            hidden_b_init=LI.Constant(0.),
            output_nonlinearity=NL.tanh,
            output_W_init=LI.Uniform(-3e-3, 3e-3),
            output_b_init=LI.Uniform(-3e-3, 3e-3),
            bn=False):
        Serializable.quick_init(self, locals())

        l_obs = L.InputLayer(shape=(None, env_spec.observation_space.flat_dim))

        l_hidden = l_obs
        if bn:
            l_hidden = batch_norm(l_hidden)

        for idx, size in enumerate(hidden_sizes):
            l_hidden = L.DenseLayer(
                l_hidden,
                num_units=size,
                W=hidden_W_init,
                b=hidden_b_init,
                nonlinearity=hidden_nonlinearity,
                name="h%d" % idx
            )
            if bn:
                l_hidden = batch_norm(l_hidden)

        l_output = L.DenseLayer(
            l_hidden,
            num_units=env_spec.action_space.flat_dim,
            W=output_W_init,
            b=output_b_init,
            nonlinearity=output_nonlinearity,
            name="output"
        )

        # Note the deterministic=True argument. It makes sure that when getting
        # actions from single observations, we do not update params in the
        # batch normalization layers

        action_var = L.get_output(l_output, deterministic=True)
        self._output_layer = l_output

        self._f_actions = ext.compile_function([l_obs.input_var], action_var)

        super(DeterministicMLPPolicy, self).__init__(env_spec)
        LasagnePowered.__init__(self, [l_output])
discriminator.py 文件源码 项目:saliency-salgan-2017 作者: imatge-upc 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def build(input_height, input_width, concat_var):
    """
    Build the discriminator, all weights initialized from scratch
    :param input_width:
    :param input_height: 
    :param concat_var: Theano symbolic tensor variable
    :return: Dictionary that contains the discriminator
    """

    net = {'input': InputLayer((None, 4, input_height, input_width), input_var=concat_var)}
    print "Input: {}".format(net['input'].output_shape[1:])

    net['merge'] = ConvLayer(net['input'], 3, 1, pad=0, flip_filters=False)
    print "merge: {}".format(net['merge'].output_shape[1:])

    net['conv1'] = ConvLayer(net['merge'], 32, 3, pad=1)
    print "conv1: {}".format(net['conv1'].output_shape[1:])

    net['pool1'] = PoolLayer(net['conv1'], 4)
    print "pool1: {}".format(net['pool1'].output_shape[1:])

    net['conv2_1'] = ConvLayer(net['pool1'], 64, 3, pad=1)
    print "conv2_1: {}".format(net['conv2_1'].output_shape[1:])

    net['conv2_2'] = ConvLayer(net['conv2_1'], 64, 3, pad=1)
    print "conv2_2: {}".format(net['conv2_2'].output_shape[1:])

    net['pool2'] = PoolLayer(net['conv2_2'], 2)
    print "pool2: {}".format(net['pool2'].output_shape[1:])

    net['conv3_1'] = nn.weight_norm(ConvLayer(net['pool2'], 64, 3, pad=1))
    print "conv3_1: {}".format(net['conv3_1'].output_shape[1:])

    net['conv3_2'] = nn.weight_norm(ConvLayer(net['conv3_1'], 64, 3, pad=1))
    print "conv3_2: {}".format(net['conv3_2'].output_shape[1:])

    net['pool3'] = PoolLayer(net['conv3_2'], 2)
    print "pool3: {}".format(net['pool3'].output_shape[1:])

    net['fc4'] = DenseLayer(net['pool3'], num_units=100, nonlinearity=tanh)
    print "fc4: {}".format(net['fc4'].output_shape[1:])

    net['fc5'] = DenseLayer(net['fc4'], num_units=2, nonlinearity=tanh)
    print "fc5: {}".format(net['fc5'].output_shape[1:])

    net['prob'] = DenseLayer(net['fc5'], num_units=1, nonlinearity=sigmoid)
    print "prob: {}".format(net['prob'].output_shape[1:])

    return net
deltanet_majority_vote.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def create_model(dbn, input_shape, input_var, mask_shape, mask_var,
                 lstm_size=250, win=T.iscalar('theta)'),
                 output_classes=26, w_init_fn=GlorotUniform, use_peepholes=False, use_blstm=True):

    weights, biases, shapes, nonlinearities = dbn

    gate_parameters = Gate(
        W_in=w_init_fn, W_hid=w_init_fn,
        b=las.init.Constant(0.))
    cell_parameters = Gate(
        W_in=w_init_fn, W_hid=w_init_fn,
        # Setting W_cell to None denotes that no cell connection will be used.
        W_cell=None, b=las.init.Constant(0.),
        # By convention, the cell nonlinearity is tanh in an LSTM.
        nonlinearity=tanh)

    l_in = InputLayer(input_shape, input_var, 'input')
    l_mask = InputLayer(mask_shape, mask_var, 'mask')

    symbolic_batchsize = l_in.input_var.shape[0]
    symbolic_seqlen = l_in.input_var.shape[1]

    l_reshape1 = ReshapeLayer(l_in, (-1, input_shape[-1]), name='reshape1')
    l_encoder = create_pretrained_encoder(l_reshape1, weights, biases,
                                          shapes,
                                          nonlinearities,
                                          ['fc1', 'fc2', 'fc3', 'bottleneck'])
    encoder_len = las.layers.get_output_shape(l_encoder)[-1]
    l_reshape2 = ReshapeLayer(l_encoder, (symbolic_batchsize, symbolic_seqlen, encoder_len), name='reshape2')
    l_delta = DeltaLayer(l_reshape2, win, name='delta')

    if use_blstm:
        l_lstm, l_lstm_back = create_blstm(l_delta, l_mask, lstm_size, cell_parameters, gate_parameters, 'blstm1',
                                           use_peepholes)

        # We'll combine the forward and backward layer output by summing.
        # Merge layers take in lists of layers to merge as input.
        l_sum1 = ElemwiseSumLayer([l_lstm, l_lstm_back], name='sum1')
        # reshape, flatten to 2 dimensions to run softmax on all timesteps
        l_reshape3 = ReshapeLayer(l_sum1, (-1, lstm_size), name='reshape3')
    else:
        l_lstm = create_lstm(l_delta, l_mask, lstm_size, cell_parameters, gate_parameters, 'lstm', use_peepholes)
        l_reshape3 = ReshapeLayer(l_lstm, (-1, lstm_size), name='reshape3')

    # Now, we can apply feed-forward layers as usual.
    # We want the network to predict a classification for the sequence,
    # so we'll use a the number of classes.
    l_softmax = DenseLayer(
        l_reshape3, num_units=output_classes, nonlinearity=las.nonlinearities.softmax, name='softmax')

    l_out = ReshapeLayer(l_softmax, (-1, symbolic_seqlen, output_classes), name='output')

    return l_out
baseline_end2end.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def create_model(dbn, input_shape, input_var, mask_shape, mask_var,
                 lstm_size=250, output_classes=26):

    dbn_layers = dbn.get_all_layers()
    weights = []
    biases = []
    weights.append(dbn_layers[1].W.astype('float32'))
    weights.append(dbn_layers[2].W.astype('float32'))
    weights.append(dbn_layers[3].W.astype('float32'))
    weights.append(dbn_layers[4].W.astype('float32'))
    biases.append(dbn_layers[1].b.astype('float32'))
    biases.append(dbn_layers[2].b.astype('float32'))
    biases.append(dbn_layers[3].b.astype('float32'))
    biases.append(dbn_layers[4].b.astype('float32'))

    gate_parameters = Gate(
        W_in=las.init.Orthogonal(), W_hid=las.init.Orthogonal(),
        b=las.init.Constant(0.))
    cell_parameters = Gate(
        W_in=las.init.Orthogonal(), W_hid=las.init.Orthogonal(),
        # Setting W_cell to None denotes that no cell connection will be used.
        W_cell=None, b=las.init.Constant(0.),
        # By convention, the cell nonlinearity is tanh in an LSTM.
        nonlinearity=tanh)

    l_in = InputLayer(input_shape, input_var, 'input')
    l_mask = InputLayer(mask_shape, mask_var, 'mask')

    symbolic_batchsize = l_in.input_var.shape[0]
    symbolic_seqlen = l_in.input_var.shape[1]

    l_reshape1 = ReshapeLayer(l_in, (-1, input_shape[-1]), name='reshape1')
    l_encoder = create_pretrained_encoder(weights, biases, l_reshape1)
    encoder_len = las.layers.get_output_shape(l_encoder)[-1]
    l_reshape2 = ReshapeLayer(l_encoder, (symbolic_batchsize, symbolic_seqlen, encoder_len), name='reshape2')
    # l_delta = DeltaLayer(l_reshape2, win, name='delta')

    # l_lstm = create_lstm(l_reshape2, l_mask, lstm_size, cell_parameters, gate_parameters, 'lstm1')
    l_lstm, l_lstm_back = create_blstm(l_reshape2, l_mask, lstm_size, cell_parameters, gate_parameters, 'lstm1')

    # We'll combine the forward and backward layer output by summing.
    # Merge layers take in lists of layers to merge as input.
    l_sum1 = ElemwiseSumLayer([l_lstm, l_lstm_back], name='sum1')

    l_forward_slice1 = SliceLayer(l_sum1, -1, 1, name='slice1')

    # Now, we can apply feed-forward layers as usual.
    # We want the network to predict a classification for the sequence,
    # so we'll use a the number of classes.
    l_out = DenseLayer(
        l_forward_slice1, num_units=output_classes, nonlinearity=las.nonlinearities.softmax, name='output')

    return l_out
avnet.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def create_pretrained_substream(weights, biases, input_shape, input_var, mask_shape, mask_var, name,
                                lstm_size=250, win=T.iscalar('theta'), nonlinearity=rectify,
                                w_init_fn=las.init.Orthogonal(), use_peepholes=True):
    gate_parameters = Gate(
        W_in=w_init_fn, W_hid=w_init_fn,
        b=las.init.Constant(0.))
    cell_parameters = Gate(
        W_in=w_init_fn, W_hid=w_init_fn,
        # Setting W_cell to None denotes that no cell connection will be used.
        W_cell=None, b=las.init.Constant(0.),
        # By convention, the cell nonlinearity is tanh in an LSTM.
        nonlinearity=tanh)

    l_input = InputLayer(input_shape, input_var, 'input_'+name)
    l_mask = InputLayer(mask_shape, mask_var, 'mask')

    symbolic_batchsize_raw = l_input.input_var.shape[0]
    symbolic_seqlen_raw = l_input.input_var.shape[1]

    l_reshape1_raw = ReshapeLayer(l_input, (-1, input_shape[-1]), name='reshape1_'+name)
    l_encoder_raw = create_pretrained_encoder(l_reshape1_raw, weights, biases,
                                              [2000, 1000, 500, 50],
                                              [nonlinearity, nonlinearity, nonlinearity, linear],
                                              ['fc1_'+name, 'fc2_'+name, 'fc3_'+name, 'bottleneck_'+name])
    input_len = las.layers.get_output_shape(l_encoder_raw)[-1]

    l_reshape2 = ReshapeLayer(l_encoder_raw,
                                  (symbolic_batchsize_raw, symbolic_seqlen_raw, input_len),
                                  name='reshape2_'+name)
    l_delta = DeltaLayer(l_reshape2, win, name='delta_'+name)

    l_lstm = LSTMLayer(
        l_delta, int(lstm_size), peepholes=use_peepholes,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='lstm_'+name)

    return l_lstm


问题


面经


文章

微信
公众号

扫码关注公众号