python类Gate()的实例源码

layers.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def create_lstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name, use_peepholes=False):
    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units, peepholes=use_peepholes,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name=name)
    return l_lstm
lstm_classifier_baseline.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def create_lstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name):
    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    return l_lstm
baseline_end2end.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def create_lstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name):
    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    return l_lstm
adenet_v2_3.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def create_lstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name, use_peepholes=True):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units, peepholes=use_peepholes,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    return l_lstm
adenet_v2_4.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def create_lstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name, use_peepholes=True):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units,
        # We need to specify a separate input for masks
        mask_input=l_mask, peepholes=use_peepholes,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    return l_lstm
maxru.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def exe_maxru(length, num_units, position, binominal):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(None, length, 1), input_var=input_var, name='input')

    time_updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    time_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                       b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    resetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                     W_cell=lasagne.init.GlorotUniform())

    updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                      W_cell=lasagne.init.GlorotUniform())

    hiden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_taru = MAXRULayer(layer_input, num_units, max_length=length,
                            P_time=lasagne.init.GlorotUniform(), nonlinearity=nonlinearities.tanh,
                            resetgate=resetgate, updategate=updategate, hidden_update=hiden_update,
                            time_updategate=time_updategate, time_update=time_update,
                            only_return_final=True, name='MAXRU', p=0.)

    # W = layer_taru.W_hid_to_hidden_update.sum()
    # U = layer_taru.W_in_to_hidden_update.sum()
    # b = layer_taru.b_hidden_update.sum()

    layer_output = DenseLayer(layer_taru, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, input_var, target_var, batch_size, length, position, binominal)
rnn.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def exe_lstm(use_embedd, length, num_units, position, binominal):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(None, length, 1), input_var=input_var, name='input')
    if use_embedd:
        layer_position = construct_position_input(batch_size, length, num_units)
        layer_input = lasagne.layers.concat([layer_input, layer_position], axis=2)

    ingate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                  W_cell=lasagne.init.Uniform(range=0.1))

    outgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                   W_cell=lasagne.init.Uniform(range=0.1))
    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    forgetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                      W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    # now use tanh for nonlinear function of cell, need to try pure linear cell
    cell = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_lstm = LSTMLayer(layer_input, num_units, ingate=ingate, forgetgate=forgetgate, cell=cell, outgate=outgate,
                           peepholes=False, nonlinearity=nonlinearities.tanh, only_return_final=True, name='LSTM')

    # W = layer_lstm.W_hid_to_cell.sum()
    # U = layer_lstm.W_in_to_cell.sum()
    # b = layer_lstm.b_cell.sum()

    layer_output = DenseLayer(layer_lstm, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, layer_lstm, input_var, target_var, batch_size, length, position, binominal)
rnn.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def exe_gru(use_embedd, length, num_units, position, binominal, reset_input):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(batch_size, length, 1), input_var=input_var, name='input')
    if use_embedd:
        layer_position = construct_position_input(batch_size, length, num_units)
        layer_input = lasagne.layers.concat([layer_input, layer_position], axis=2)

    resetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    hiden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_gru = GRULayer_ANA(layer_input, num_units, resetgate=resetgate, updategate=updategate, hidden_update=hiden_update,
                         reset_input=reset_input, only_return_final=True, name='GRU')

    # W = layer_gru.W_hid_to_hidden_update.sum()
    # U = layer_gru.W_in_to_hidden_update.sum()
    # b = layer_gru.b_hidden_update.sum()

    layer_output = DenseLayer(layer_gru, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, layer_gru, input_var, target_var, batch_size, length, position, binominal)
custom_layers.py 文件源码 项目:MachineComprehension 作者: sa-j 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, incoming, num_units, ingate=Gate(), forgetgate=Gate(),
                 cell=Gate(W_cell=None, nonlinearity=nonlinearities.tanh), outgate=Gate(),
                 nonlinearity=nonlinearities.tanh, cell_init=init.Constant(0.), hid_init=init.Constant(0.),
                 backwards=False, learn_init=False, peepholes=True, gradient_steps=-1, grad_clipping=0,
                 unroll_scan=False, precompute_input=True, mask_input=None, **kwargs):
        super(CustomLSTMEncoder, self).__init__(incoming, num_units, ingate, forgetgate, cell, outgate, nonlinearity,
                                                cell_init, hid_init, backwards, learn_init, peepholes, gradient_steps,
                                                grad_clipping, unroll_scan, precompute_input, mask_input, False,
                                                **kwargs)
test_recurrent.py 文件源码 项目:seq2seq-lasagne 作者: erfannoury 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_lnlstm_passthrough():
    # Tests that the LSTM can simply pass through its input
    l_in = InputLayer((4, 5, 6))
    zero = lasagne.init.Constant(0.)
    one = lasagne.init.Constant(1.)
    pass_gate = Gate(zero, zero, zero, one, None)
    no_gate = Gate(zero, zero, zero, zero, None)
    in_pass_gate = Gate(
        np.eye(6).astype(theano.config.floatX), zero, zero, zero, None)
    l_rec = LNLSTMLayer(
        l_in, 6, pass_gate, no_gate, in_pass_gate, pass_gate, None)
    out = lasagne.layers.get_output(l_rec)
    inp = np.arange(4*5*6).reshape(4, 5, 6).astype(theano.config.floatX)
    # np.testing.assert_almost_equal(out.eval({l_in.input_var: inp}), inp)
test_recurrent.py 文件源码 项目:seq2seq-lasagne 作者: erfannoury 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_lstm_passthrough():
    # Tests that the LSTM can simply pass through its input
    l_in = InputLayer((4, 5, 6))
    zero = lasagne.init.Constant(0.)
    one = lasagne.init.Constant(1.)
    pass_gate = Gate(zero, zero, zero, one, None)
    no_gate = Gate(zero, zero, zero, zero, None)
    in_pass_gate = Gate(
        np.eye(6).astype(theano.config.floatX), zero, zero, zero, None)
    l_rec = LSTMLayer(
        l_in, 6, pass_gate, no_gate, in_pass_gate, pass_gate, None)
    out = lasagne.layers.get_output(l_rec)
    inp = np.arange(4*5*6).reshape(4, 5, 6).astype(theano.config.floatX)
    np.testing.assert_almost_equal(out.eval({l_in.input_var: inp}), inp)
evaluate_delta_features.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def generate_lstm_parameters():
    gate_parameters = Gate(
        W_in=las.init.Orthogonal(), W_hid=las.init.Orthogonal(),
        b=las.init.Constant(0.))
    cell_parameters = Gate(
        W_in=las.init.Orthogonal(), W_hid=las.init.Orthogonal(),
        # Setting W_cell to None denotes that no cell connection will be used.
        W_cell=None, b=las.init.Constant(0.),
        # By convention, the cell nonlinearity is tanh in an LSTM.
        nonlinearity=tanh)
    return gate_parameters, cell_parameters
layers.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_blstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name, use_peepholes=False):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units, peepholes=use_peepholes,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    # The "backwards" layer is the same as the first,
    # except that the backwards argument is set to True.
    l_lstm_back = LSTMLayer(
        l_incoming, hidden_units, ingate=gate_parameters, peepholes=use_peepholes,
        mask_input=l_mask, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        learn_init=True, grad_clipping=5., backwards=True, name='b_{}'.format(name))

    return l_lstm, l_lstm_back
adenet_v1_1.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def create_blstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    # The "backwards" layer is the same as the first,
    # except that the backwards argument is set to True.
    l_lstm_back = LSTMLayer(
        l_incoming, hidden_units, ingate=gate_parameters,
        mask_input=l_mask, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        learn_init=True, grad_clipping=5., backwards=True, name='b_{}'.format(name))

    return l_lstm, l_lstm_back
lstm_classifier_baseline.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_model(input_shape, input_var, mask_shape, mask_var, lstm_size=250, output_classes=26,
                 w_init=las.init.Orthogonal()):
    gate_parameters = Gate(
        W_in=w_init, W_hid=w_init,
        b=las.init.Constant(0.))
    cell_parameters = Gate(
        W_in=w_init, W_hid=w_init,
        # Setting W_cell to None denotes that no cell connection will be used.
        W_cell=None, b=las.init.Constant(0.),
        # By convention, the cell nonlinearity is tanh in an LSTM.
        nonlinearity=tanh)

    l_in = InputLayer(input_shape, input_var, 'input')
    l_mask = InputLayer(mask_shape, mask_var, 'mask')

    f_lstm, b_lstm = create_blstm(l_in, l_mask, lstm_size, cell_parameters, gate_parameters, 'lstm')

    l_sum = ElemwiseSumLayer([f_lstm, b_lstm], name='sum')
    l_forward_slice1 = SliceLayer(l_sum, -1, 1, name='slice1')

    # Now, we can apply feed-forward layers as usual.
    # We want the network to predict a classification for the sequence,
    # so we'll use a the number of classes.
    l_out = DenseLayer(
        l_forward_slice1, num_units=output_classes, nonlinearity=las.nonlinearities.softmax, name='output')

    return l_out
adenet_v6.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def create_blstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    # The "backwards" layer is the same as the first,
    # except that the backwards argument is set to True.
    l_lstm_back = LSTMLayer(
        l_incoming, hidden_units, ingate=gate_parameters,
        mask_input=l_mask, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        learn_init=True, grad_clipping=5., backwards=True, name='b_{}'.format(name))

    return l_lstm, l_lstm_back
adenet_v4.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def create_blstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    # The "backwards" layer is the same as the first,
    # except that the backwards argument is set to True.
    l_lstm_back = LSTMLayer(
        l_incoming, hidden_units, ingate=gate_parameters,
        mask_input=l_mask, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        learn_init=True, grad_clipping=5., backwards=True, name='b_{}'.format(name))

    return l_lstm, l_lstm_back
adenet_v2_2.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def create_blstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name, use_peepholes=True):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units,
        # We need to specify a separate input for masks
        mask_input=l_mask, peepholes=use_peepholes,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    # The "backwards" layer is the same as the first,
    # except that the backwards argument is set to True.
    l_lstm_back = LSTMLayer(
        l_incoming, hidden_units, ingate=gate_parameters, peepholes=use_peepholes,
        mask_input=l_mask, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        learn_init=True, grad_clipping=5., backwards=True, name='b_{}'.format(name))

    return l_lstm, l_lstm_back
baseline_end2end.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def create_blstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    # The "backwards" layer is the same as the first,
    # except that the backwards argument is set to True.
    l_lstm_back = LSTMLayer(
        l_incoming, hidden_units, ingate=gate_parameters,
        mask_input=l_mask, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        learn_init=True, grad_clipping=5., backwards=True, name='b_{}'.format(name))

    return l_lstm, l_lstm_back
adenet_v2_1.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def create_blstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name, use_peepholes=True):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units,
        # We need to specify a separate input for masks
        mask_input=l_mask, peepholes=use_peepholes,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    # The "backwards" layer is the same as the first,
    # except that the backwards argument is set to True.
    l_lstm_back = LSTMLayer(
        l_incoming, hidden_units, ingate=gate_parameters, peepholes=use_peepholes,
        mask_input=l_mask, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        learn_init=True, grad_clipping=5., backwards=True, name='b_{}'.format(name))

    return l_lstm, l_lstm_back
deltanet_v1.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def create_model(input_shape, input_var, mask_shape, mask_var, window, lstm_size=250, output_classes=26,
                 w_init=las.init.GlorotUniform(), use_peepholes=False, use_blstm=True):
    gate_parameters = Gate(
        W_in=w_init, W_hid=w_init,
        b=las.init.Constant(0.))
    cell_parameters = Gate(
        W_in=w_init, W_hid=w_init,
        # Setting W_cell to None denotes that no cell connection will be used.
        W_cell=None, b=las.init.Constant(0.),
        # By convention, the cell nonlinearity is tanh in an LSTM.
        nonlinearity=tanh)

    l_in = InputLayer(input_shape, input_var, 'input')
    l_mask = InputLayer(mask_shape, mask_var, name='mask')

    symbolic_seqlen = l_in.input_var.shape[1]
    l_delta = DeltaLayer(l_in, window, name='delta')

    if use_blstm:
        f_lstm, b_lstm = create_blstm(l_delta, l_mask, lstm_size, cell_parameters, gate_parameters, 'lstm', use_peepholes)
        l_sum = ElemwiseSumLayer([f_lstm, b_lstm], name='sum')
        # reshape to (num_examples * seq_len, lstm_size)
        l_reshape = ReshapeLayer(l_sum, (-1, lstm_size), name='reshape')
    else:
        l_lstm = create_lstm(l_delta, l_mask, lstm_size, cell_parameters, gate_parameters, 'lstm', use_peepholes)
        l_reshape = ReshapeLayer(l_lstm, (-1, lstm_size), name='reshape')

    # Now, we can apply feed-forward layers as usual.
    # We want the network to predict a classification for the sequence,
    # so we'll use a the number of classes.
    l_softmax = DenseLayer(
        l_reshape, num_units=output_classes, nonlinearity=las.nonlinearities.softmax, name='softmax')

    l_out = ReshapeLayer(l_softmax, (-1, symbolic_seqlen, output_classes), name='output')
    return l_out
adenet_v5.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def create_blstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    # The "backwards" layer is the same as the first,
    # except that the backwards argument is set to True.
    l_lstm_back = LSTMLayer(
        l_incoming, hidden_units, ingate=gate_parameters,
        mask_input=l_mask, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        learn_init=True, grad_clipping=5., backwards=True, name='b_{}'.format(name))

    return l_lstm, l_lstm_back
adenet_v2_3.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def create_blstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name, use_peepholes=True):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units, peepholes=use_peepholes,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    # The "backwards" layer is the same as the first,
    # except that the backwards argument is set to True.
    l_lstm_back = LSTMLayer(
        l_incoming, hidden_units, ingate=gate_parameters, peepholes=use_peepholes,
        mask_input=l_mask, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        learn_init=True, grad_clipping=5., backwards=True, name='b_{}'.format(name))

    return l_lstm, l_lstm_back
avnet.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_model(substreams, mask_shape, mask_var, lstm_size=250, output_classes=26,
                 fusiontype='concat', w_init_fn=las.init.Orthogonal(), use_peepholes=True):

    gate_parameters = Gate(
        W_in=w_init_fn, W_hid=w_init_fn,
        b=las.init.Constant(0.))
    cell_parameters = Gate(
        W_in=w_init_fn, W_hid=w_init_fn,
        # Setting W_cell to None denotes that no cell connection will be used.
        W_cell=None, b=las.init.Constant(0.),
        # By convention, the cell nonlinearity is tanh in an LSTM.
        nonlinearity=tanh)

    l_mask = InputLayer(mask_shape, mask_var, 'mask')
    symbolic_seqlen_raw = l_mask.input_var.shape[1]

    # We'll combine the forward and backward layer output by summing.
    # Merge layers take in lists of layers to merge as input.
    if fusiontype == 'adasum':
        l_fuse = AdaptiveElemwiseSumLayer(substreams, name='adasum1')
    elif fusiontype == 'sum':
        l_fuse = ElemwiseSumLayer(substreams, name='sum1')
    elif fusiontype == 'concat':
        l_fuse = ConcatLayer(substreams, axis=-1, name='concat')

    f_lstm_agg, b_lstm_agg = create_blstm(l_fuse, l_mask, lstm_size, cell_parameters, gate_parameters, 'lstm_agg')
    l_sum2 = ElemwiseSumLayer([f_lstm_agg, b_lstm_agg], name='sum2')

    # reshape to (num_examples * seq_len, lstm_size)
    l_reshape3 = ReshapeLayer(l_sum2, (-1, lstm_size), name='reshape3')

    # Now, we can apply feed-forward layers as usual.
    # We want the network to predict a classification for the sequence,
    # so we'll use a the number of classes.
    l_softmax = DenseLayer(
        l_reshape3, num_units=output_classes,
        nonlinearity=las.nonlinearities.softmax, name='softmax')

    l_out = ReshapeLayer(l_softmax, (-1, symbolic_seqlen_raw, output_classes), name='output')

    return l_out, l_fuse
adenet_v3.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def create_blstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    # The "backwards" layer is the same as the first,
    # except that the backwards argument is set to True.
    l_lstm_back = LSTMLayer(
        l_incoming, hidden_units, ingate=gate_parameters,
        mask_input=l_mask, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        learn_init=True, grad_clipping=5., backwards=True, name='b_{}'.format(name))

    return l_lstm, l_lstm_back
adenet_v1.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_blstm(l_incoming, l_mask, hidden_units, cell_parameters, gate_parameters, name):

    if cell_parameters is None:
        cell_parameters = Gate()
    if gate_parameters is None:
        gate_parameters = Gate()

    l_lstm = LSTMLayer(
        l_incoming, hidden_units,
        # We need to specify a separate input for masks
        mask_input=l_mask,
        # Here, we supply the gate parameters for each gate
        ingate=gate_parameters, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        # We'll learn the initialization and use gradient clipping
        learn_init=True, grad_clipping=5., name='f_{}'.format(name))

    # The "backwards" layer is the same as the first,
    # except that the backwards argument is set to True.
    l_lstm_back = LSTMLayer(
        l_incoming, hidden_units, ingate=gate_parameters,
        mask_input=l_mask, forgetgate=gate_parameters,
        cell=cell_parameters, outgate=gate_parameters,
        learn_init=True, grad_clipping=5., backwards=True, name='b_{}'.format(name))

    return l_lstm, l_lstm_back
sequence_labeling.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_recur_dropout(incoming1, incoming2, num_units, num_labels, mask, grad_clipping, num_filters, p):
    # Construct Bi-directional LSTM-CNNs-CRF with recurrent dropout.
    # first get some necessary dimensions or parameters
    conv_window = 3
    # shape = [batch, n-step, c_dim, char_length]
    # construct convolution layer
    # shape = [batch, n-step, c_filters, output_length]
    cnn_layer = ConvTimeStep1DLayer(incoming1, num_filters=num_filters, filter_size=conv_window, pad='full',
                                    nonlinearity=lasagne.nonlinearities.tanh, name='cnn')
    # infer the pool size for pooling (pool size should go through all time step of cnn)
    _, _, _, pool_size = cnn_layer.output_shape
    # construct max pool layer
    # shape = [batch, n-step, c_filters, 1]
    pool_layer = PoolTimeStep1DLayer(cnn_layer, pool_size=pool_size)
    # reshape: [batch, n-step, c_filters, 1] --> [batch, n-step, c_filters]
    output_cnn_layer = lasagne.layers.reshape(pool_layer, ([0], [1], [2]))

    # finally, concatenate the two incoming layers together.
    # shape = [batch, n-step, c_filter&w_dim]
    incoming = lasagne.layers.concat([output_cnn_layer, incoming2], axis=2)

    # dropout for incoming
    incoming = lasagne.layers.DropoutLayer(incoming, p=p, shared_axes=(1,))

    ingate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                          W_cell=lasagne.init.Uniform(range=0.1))
    outgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                           W_cell=lasagne.init.Uniform(range=0.1))
    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    forgetgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                              W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    # now use tanh for nonlinear function of cell, need to try pure linear cell
    cell_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        nonlinearity=nonlinearities.tanh)
    lstm_forward = LSTMLayer(incoming, num_units, mask_input=mask, grad_clipping=grad_clipping,
                             nonlinearity=nonlinearities.tanh, peepholes=False,
                             ingate=ingate_forward, outgate=outgate_forward,
                             forgetgate=forgetgate_forward, cell=cell_forward, p=p, name='forward')

    ingate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                           W_cell=lasagne.init.Uniform(range=0.1))
    outgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                            W_cell=lasagne.init.Uniform(range=0.1))
    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    forgetgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                               W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    # now use tanh for nonlinear function of cell, need to try pure linear cell
    cell_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                         nonlinearity=nonlinearities.tanh)
    lstm_backward = LSTMLayer(incoming, num_units, mask_input=mask, grad_clipping=grad_clipping,
                              nonlinearity=nonlinearities.tanh, peepholes=False, backwards=True,
                              ingate=ingate_backward, outgate=outgate_backward,
                              forgetgate=forgetgate_backward, cell=cell_backward, p=p, name='backward')

    # concatenate the outputs of forward and backward LSTMs to combine them.
    bi_lstm_cnn = lasagne.layers.concat([lstm_forward, lstm_backward], axis=2, name="bi-lstm")
    # shape = [batch, n-step, num_units]
    bi_lstm_cnn = lasagne.layers.DropoutLayer(bi_lstm_cnn, p=p, shared_axes=(1,))

    return ChainCRFLayer(bi_lstm_cnn, num_labels, mask_input=mask)
sent_classify.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def build_RNN(architec, layer_input, layer_mask, num_units, grad_clipping):
    def build_GRU(reset_input):
        resetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

        updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

        hiden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                            b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

        return GRULayer(layer_input, num_units, mask_input=layer_mask, grad_clipping=grad_clipping,
                        resetgate=resetgate, updategate=updategate, hidden_update=hiden_update,
                        reset_input=reset_input, only_return_final=True, p=0.5, name='GRU')

    def build_LSTM():
        ingate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                      W_cell=lasagne.init.Uniform(range=0.1))

        outgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                       W_cell=lasagne.init.Uniform(range=0.1))
        # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
        forgetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                          W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
        # now use tanh for nonlinear function of cell, need to try pure linear cell
        cell = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                    b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

        return LSTMLayer(layer_input, num_units, mask_input=layer_mask, grad_clipping=grad_clipping,
                         ingate=ingate, forgetgate=forgetgate, cell=cell, outgate=outgate,
                         peepholes=False, nonlinearity=nonlinearities.tanh,
                         only_return_final=True, p=0.5, name='LSTM')

    def build_SGRU():
        resetgate_hidden = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                         W_cell=lasagne.init.GlorotUniform())

        resetgate_input = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                W_cell=lasagne.init.GlorotUniform())

        updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                          W_cell=lasagne.init.GlorotUniform())

        hidden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                            b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

        return SGRULayer(layer_input, num_units, mask_input=layer_mask, grad_clipping=grad_clipping,
                         resetgate_input=resetgate_input, resetgate_hidden=resetgate_hidden,
                         updategate=updategate, hidden_update=hidden_update,
                         only_return_final=True, p=0.5, name='SGRU')

    if architec == 'gru0':
        return build_GRU(False)
    elif architec == 'gru1':
        return build_GRU(True)
    elif architec == 'lstm':
        return build_LSTM()
    elif architec == 'sgru':
        return build_SGRU()
    else:
        raise ValueError('unkown architecture: %s' % architec)
bi-rnn-cnn.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def build_std_dropout_gru(incoming1, incoming2, num_units, num_labels, mask, grad_clipping, num_filters, p,
                          reset_input):
    # Construct Bi-directional LSTM-CNNs-CRF with standard dropout.
    # first get some necessary dimensions or parameters
    conv_window = 3
    # shape = [batch, n-step, c_dim, char_length]
    incoming1 = lasagne.layers.DropoutLayer(incoming1, p=p)

    # construct convolution layer
    # shape = [batch, n-step, c_filters, output_length]
    cnn_layer = ConvTimeStep1DLayer(incoming1, num_filters=num_filters, filter_size=conv_window, pad='full',
                                    nonlinearity=lasagne.nonlinearities.tanh, name='cnn')
    # infer the pool size for pooling (pool size should go through all time step of cnn)
    _, _, _, pool_size = cnn_layer.output_shape
    # construct max pool layer
    # shape = [batch, n-step, c_filters, 1]
    pool_layer = PoolTimeStep1DLayer(cnn_layer, pool_size=pool_size)
    # reshape: [batch, n-step, c_filters, 1] --> [batch, n-step, c_filters]
    output_cnn_layer = lasagne.layers.reshape(pool_layer, ([0], [1], [2]))

    # finally, concatenate the two incoming layers together.
    # shape = [batch, n-step, c_filter&w_dim]
    incoming = lasagne.layers.concat([output_cnn_layer, incoming2], axis=2)

    # dropout for incoming
    incoming = lasagne.layers.DropoutLayer(incoming, p=0.2)

    resetgate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    updategate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    hidden_update_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                 W_cell=None, nonlinearity=nonlinearities.tanh)
    gru_forward = GRULayer(incoming, num_units, mask_input=mask, resetgate=resetgate_forward,
                           updategate=updategate_forward, hidden_update=hidden_update_forward,
                           grad_clipping=grad_clipping, reset_input=reset_input, name='forward')

    resetgate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    updategate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    hidden_update_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                  W_cell=None, nonlinearity=nonlinearities.tanh)
    gru_backward = GRULayer(incoming, num_units, mask_input=mask, backwards=True, resetgate=resetgate_backward,
                            updategate=updategate_backward, hidden_update=hidden_update_backward,
                            grad_clipping=grad_clipping, reset_input=reset_input, name='backward')

    # concatenate the outputs of forward and backward LSTMs to combine them.
    bi_gru_cnn = lasagne.layers.concat([gru_forward, gru_backward], axis=2, name="bi-gru")

    bi_gru_cnn = lasagne.layers.DropoutLayer(bi_gru_cnn, p=p)

    # reshape bi-rnn-cnn to [batch * max_length, num_units]
    bi_gru_cnn = lasagne.layers.reshape(bi_gru_cnn, (-1, [2]))

    # construct output layer (dense layer with softmax)
    layer_output = lasagne.layers.DenseLayer(bi_gru_cnn, num_units=num_labels, nonlinearity=nonlinearities.softmax,
                                             name='softmax')

    return layer_output
bi-rnn-cnn.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def build_std_dropout_sgru(incoming1, incoming2, num_units, num_labels, mask, grad_clipping, num_filters, p):
    # Construct Bi-directional LSTM-CNNs-CRF with standard dropout.
    # first get some necessary dimensions or parameters
    conv_window = 3
    # shape = [batch, n-step, c_dim, char_length]
    incoming1 = lasagne.layers.DropoutLayer(incoming1, p=p)

    # construct convolution layer
    # shape = [batch, n-step, c_filters, output_length]
    cnn_layer = ConvTimeStep1DLayer(incoming1, num_filters=num_filters, filter_size=conv_window, pad='full',
                                    nonlinearity=lasagne.nonlinearities.tanh, name='cnn')
    # infer the pool size for pooling (pool size should go through all time step of cnn)
    _, _, _, pool_size = cnn_layer.output_shape
    # construct max pool layer
    # shape = [batch, n-step, c_filters, 1]
    pool_layer = PoolTimeStep1DLayer(cnn_layer, pool_size=pool_size)
    # reshape: [batch, n-step, c_filters, 1] --> [batch, n-step, c_filters]
    output_cnn_layer = lasagne.layers.reshape(pool_layer, ([0], [1], [2]))

    # finally, concatenate the two incoming layers together.
    # shape = [batch, n-step, c_filter&w_dim]
    incoming = lasagne.layers.concat([output_cnn_layer, incoming2], axis=2)

    # dropout for incoming
    incoming = lasagne.layers.DropoutLayer(incoming, p=0.2)

    resetgate_input_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    resetgate_hidden_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    updategate_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    hidden_update_forward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                 W_cell=None, nonlinearity=nonlinearities.tanh)
    sgru_forward = SGRULayer(incoming, num_units, mask_input=mask,
                             resetgate_input=resetgate_input_forward, resetgate_hidden=resetgate_hidden_forward,
                             updategate=updategate_forward, hidden_update=hidden_update_forward,
                             grad_clipping=grad_clipping, name='forward')

    resetgate_input_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    resetgate_hidden_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    updategate_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)
    hidden_update_backward = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                                  W_cell=None, nonlinearity=nonlinearities.tanh)
    sgru_backward = SGRULayer(incoming, num_units, mask_input=mask, backwards=True,
                              resetgate_input=resetgate_input_backward, resetgate_hidden=resetgate_hidden_backward,
                              updategate=updategate_backward, hidden_update=hidden_update_backward,
                              grad_clipping=grad_clipping, name='backward')

    # concatenate the outputs of forward and backward LSTMs to combine them.
    bi_sgru_cnn = lasagne.layers.concat([sgru_forward, sgru_backward], axis=2, name="bi-sgru")

    bi_sgru_cnn = lasagne.layers.DropoutLayer(bi_sgru_cnn, p=p)

    # reshape bi-rnn-cnn to [batch * max_length, num_units]
    bi_sgru_cnn = lasagne.layers.reshape(bi_sgru_cnn, (-1, [2]))

    # construct output layer (dense layer with softmax)
    layer_output = lasagne.layers.DenseLayer(bi_sgru_cnn, num_units=num_labels, nonlinearity=nonlinearities.softmax,
                                             name='softmax')

    return layer_output


问题


面经


文章

微信
公众号

扫码关注公众号