def build_model(input_var=None):
layers = [1, 5, 10, 1]
l_in = InputLayer((None, None, layers[0]),
input_var=input_var)
l_lstm1 = LSTMLayer(l_in, layers[1])
l_lstm1_dropout = DropoutLayer(l_lstm1, p=0.2)
l_lstm2 = LSTMLayer(l_lstm1_dropout, layers[2])
l_lstm2_dropout = DropoutLayer(l_lstm2, p=0.2)
# The objective of this task depends only on the final value produced by
# the network. So, we'll use SliceLayers to extract the LSTM layer's
# output after processing the entire input sequence. For the forward
# layer, this corresponds to the last value of the second (sequence length)
# dimension.
l_slice = SliceLayer(l_lstm2_dropout, -1, 1)
l_out = DenseLayer(l_slice, 1, nonlinearity=lasagne.nonlinearities.linear)
return l_out
python类SliceLayer()的实例源码
def build_model(input_var=None):
layers = [1, 5, 10, 1]
l_in = InputLayer((None, None, layers[0]),
input_var=input_var)
l_lstm1 = LSTMLayer(l_in, layers[1])
l_lstm1_dropout = DropoutLayer(l_lstm1, p=0.2)
l_lstm2 = LSTMLayer(l_lstm1_dropout, layers[2])
l_lstm2_dropout = DropoutLayer(l_lstm2, p=0.2)
# The objective of this task depends only on the final value produced by
# the network. So, we'll use SliceLayers to extract the LSTM layer's
# output after processing the entire input sequence. For the forward
# layer, this corresponds to the last value of the second (sequence length)
# dimension.
l_slice = SliceLayer(l_lstm2_dropout, -1, 1)
l_out = DenseLayer(l_slice, 1, nonlinearity=lasagne.nonlinearities.linear)
return l_out
def build_rnn(conv_input_var, seq_input_var, conv_shape, word_dims, n_hid, lstm_layers):
ret = {}
ret['seq_input'] = seq_layer = InputLayer((None, None, word_dims), input_var=seq_input_var)
batchsize, seqlen, _ = seq_layer.input_var.shape
ret['seq_resh'] = seq_layer = ReshapeLayer(seq_layer, shape=(-1, word_dims))
ret['seq_proj'] = seq_layer = DenseLayer(seq_layer, num_units=n_hid)
ret['seq_resh2'] = seq_layer = ReshapeLayer(seq_layer, shape=(batchsize, seqlen, n_hid))
ret['conv_input'] = conv_layer = InputLayer(conv_shape, input_var = conv_input_var)
ret['conv_proj'] = conv_layer = DenseLayer(conv_layer, num_units=n_hid)
ret['conv_resh'] = conv_layer = ReshapeLayer(conv_layer, shape=([0], 1, -1))
ret['input_concat'] = layer = ConcatLayer([conv_layer, seq_layer], axis=1)
for lstm_layer_idx in xrange(lstm_layers):
ret['lstm_{}'.format(lstm_layer_idx)] = layer = LSTMLayer(layer, n_hid)
ret['out_resh'] = layer = ReshapeLayer(layer, shape=(-1, n_hid))
ret['output_proj'] = layer = DenseLayer(layer, num_units=word_dims, nonlinearity=log_softmax)
ret['output'] = layer = ReshapeLayer(layer, shape=(batchsize, seqlen+1, word_dims))
ret['output'] = layer = SliceLayer(layer, indices=slice(None, -1), axis=1)
return ret
# originally from
# https://github.com/Lasagne/Recipes/blob/master/examples/styletransfer/Art%20Style%20Transfer.ipynb
def _invert_PadLayer(self, layer, feeder):
assert isinstance(layer, L.PadLayer)
assert layer.batch_ndim == 2
assert len(L.get_output_shape(layer))==4.
tmp = L.SliceLayer(feeder,
slice(layer.width[0][0], -layer.width[0][1]),
axis=2)
return L.SliceLayer(tmp,
slice(layer.width[1][0], -layer.width[1][1]),
axis=3)
def _invert_layer(self, layer, feeder):
layer_type = type(layer)
if L.get_output_shape(feeder) != L.get_output_shape(layer):
feeder = L.ReshapeLayer(feeder, (-1,)+L.get_output_shape(layer)[1:])
if layer_type is L.InputLayer:
return self._invert_InputLayer(layer, feeder)
elif layer_type is L.FlattenLayer:
return self._invert_FlattenLayer(layer, feeder)
elif layer_type is L.DenseLayer:
return self._invert_DenseLayer(layer, feeder)
elif layer_type is L.Conv2DLayer:
return self._invert_Conv2DLayer(layer, feeder)
elif layer_type is L.DropoutLayer:
return self._invert_DropoutLayer(layer, feeder)
elif layer_type in [L.MaxPool2DLayer, L.MaxPool1DLayer]:
return self._invert_MaxPoolingLayer(layer, feeder)
elif layer_type is L.PadLayer:
return self._invert_PadLayer(layer, feeder)
elif layer_type is L.SliceLayer:
return self._invert_SliceLayer(layer, feeder)
elif layer_type is L.LocalResponseNormalization2DLayer:
return self._invert_LocalResponseNormalisation2DLayer(layer, feeder)
elif layer_type is L.GlobalPoolLayer:
return self._invert_GlobalPoolLayer(layer, feeder)
else:
return self._invert_UnknownLayer(layer, feeder)
def create_network():
l = 1000
pool_size = 5
test_size1 = 13
test_size2 = 7
test_size3 = 5
kernel1 = 128
kernel2 = 128
kernel3 = 128
layer1 = InputLayer(shape=(None, 1, 4, l+1024))
layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
layer2_f = FlattenLayer(layer2_3)
layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
layer14_d = DenseLayer(layer14, num_units= 256)
layer3_2 = DenseLayer(layer2_f, num_units = 128)
layer15 = ConcatLayer([layer14_d,layer3_2])
layer16 = DropoutLayer(layer15,p=0.5)
layer17 = DenseLayer(layer16, num_units=256)
network = DenseLayer(layer17, num_units= 2, nonlinearity=softmax)
return network
#random search to initialize the weights
def create_network():
l = 1000
pool_size = 5
test_size1 = 13
test_size2 = 7
test_size3 = 5
kernel1 = 128
kernel2 = 128
kernel3 = 128
layer1 = InputLayer(shape=(None, 1, 4, l+1024))
layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
layer2_f = FlattenLayer(layer2_3)
layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
layer14_d = DenseLayer(layer14, num_units= 256)
layer3_2 = DenseLayer(layer2_f, num_units = 128)
layer15 = ConcatLayer([layer14_d,layer3_2])
#layer16 = DropoutLayer(layer15,p=0.5)
layer17 = DenseLayer(layer15, num_units=256)
network = DenseLayer(layer17, num_units= 1, nonlinearity=None)
return network
#random search to initialize the weights
def build_model():
net = {}
net['input'] = InputLayer((None, 512*20, 3, 3))
au_fc_layers=[]
for i in range(20):
net['roi_AU_N_'+str(i)]=SliceLayer(net['input'],indices=slice(i*512,(i+1)*512),axis=1)
#try to adding upsampling here for more conv
net['Roi_upsample_'+str(i)]=Upscale2DLayer(net['roi_AU_N_'+str(i)],scale_factor=2)
net['conv_roi_'+str(i)]=ConvLayer(net['Roi_upsample_'+str(i)],512,3)
net['au_fc_'+str(i)]=DenseLayer(net['conv_roi_'+str(i)],num_units=150)
au_fc_layers+=[net['au_fc_'+str(i)]]
#
net['local_fc']=concat(au_fc_layers)
net['local_fc2']=DenseLayer(net['local_fc'],num_units=2048)
net['local_fc_dp']=DropoutLayer(net['local_fc2'],p=0.5)
# net['fc_comb']=concat([net['au_fc_layer'],net['local_fc_dp']])
# net['fc_dense']=DenseLayer(net['fc_comb'],num_units=1024)
# net['fc_dense_dp']=DropoutLayer(net['fc_dense'],p=0.3)
net['real_out']=DenseLayer(net['local_fc_dp'],num_units=12,nonlinearity=sigmoid)
# net['final']=concat([net['pred_pos_layer'],net['output_layer']])
return net
def build_combination(input_var, output_nodes, input_size, stocks, period, feature_types):
# Input layer
input_layer = InputLayer(shape=(None, 1, input_size), input_var=input_var)
assert input_size == stocks * period * feature_types
input_layer = ReshapeLayer(input_layer, (([0], stocks, period, feature_types)))
#slice for partition
stock_feature_type_layers = []
for ix in range(stocks):
stock_layer = SliceLayer(input_layer, indices=ix, axis=1)
this_stock_feature_type_layers = []
for rx in range(feature_types):
this_stock_feature_type_layers.append(SliceLayer(stock_layer, indices=rx, axis=1))
stock_feature_type_layers.append(this_stock_feature_type_layers)
stock_networks = []
for this_stock_feature_type_layers in stock_feature_type_layers:
this_stock_networks = []
for feature_type_layer in this_stock_feature_type_layers:
tmp = DenseLayer(dropout(feature_type_layer, p=.2),
num_units=10, nonlinearity=tanh)
tmp = DenseLayer(dropout(tmp, p=.5), num_units=1, nonlinearity=tanh)
this_stock_networks.append(tmp)
this_stock_network = ConcatLayer(this_stock_networks)
stock_network = DenseLayer(dropout(this_stock_network, p=.5),
num_units=1, nonlinearity=tanh)
stock_networks.append(stock_network)
network = ConcatLayer(stock_networks)
network = DenseLayer(dropout(network, p=.5),
num_units=output_nodes, nonlinearity=sigmoid)
return network, stock_networks
def compile_delta_features():
# create input
input_var = T.tensor3('input', dtype='float32')
win_var = T.iscalar('theta')
weights, biases = autoencoder.load_dbn()
'''
activations = [sigmoid, sigmoid, sigmoid, linear, sigmoid, sigmoid, sigmoid, linear]
layersizes = [2000, 1000, 500, 50, 500, 1000, 2000, 1200]
ae = autoencoder.create_model(l_input, weights, biases, activations, layersizes)
print_network(ae)
reconstruct = las.layers.get_output(ae)
reconstruction_fn = theano.function([input_var], reconstruct, allow_input_downcast=True)
recon_img = reconstruction_fn(test_data_resized)
visualize_reconstruction(test_data_resized[225:250], recon_img[225:250])
'''
l_input = InputLayer((None, None, 1200), input_var, name='input')
symbolic_batchsize = l_input.input_var.shape[0]
symbolic_seqlen = l_input.input_var.shape[1]
en_activations = [sigmoid, sigmoid, sigmoid, linear]
en_layersizes = [2000, 1000, 500, 50]
l_reshape1 = ReshapeLayer(l_input, (-1, l_input.shape[-1]), name='reshape1')
l_encoder = autoencoder.create_model(l_reshape1, weights[:4], biases[:4], en_activations, en_layersizes)
encoder_len = las.layers.get_output_shape(l_encoder)[-1]
l_reshape2 = ReshapeLayer(l_encoder, (symbolic_batchsize, symbolic_seqlen, encoder_len), name='reshape2')
l_delta = DeltaLayer(l_reshape2, win_var, name='delta')
l_slice = SliceLayer(l_delta, indices=slice(50, None), axis=-1, name='slice') # extract the delta coefficients
l_reshape3 = ReshapeLayer(l_slice, (-1, l_slice.output_shape[-1]), name='reshape3')
print_network(l_reshape3)
delta_features = las.layers.get_output(l_reshape3)
delta_fn = theano.function([input_var, win_var], delta_features, allow_input_downcast=True)
return delta_fn
def create_model(input_shape, input_var, mask_shape, mask_var, lstm_size=250, output_classes=26,
w_init=las.init.Orthogonal()):
gate_parameters = Gate(
W_in=w_init, W_hid=w_init,
b=las.init.Constant(0.))
cell_parameters = Gate(
W_in=w_init, W_hid=w_init,
# Setting W_cell to None denotes that no cell connection will be used.
W_cell=None, b=las.init.Constant(0.),
# By convention, the cell nonlinearity is tanh in an LSTM.
nonlinearity=tanh)
l_in = InputLayer(input_shape, input_var, 'input')
l_mask = InputLayer(mask_shape, mask_var, 'mask')
f_lstm, b_lstm = create_blstm(l_in, l_mask, lstm_size, cell_parameters, gate_parameters, 'lstm')
l_sum = ElemwiseSumLayer([f_lstm, b_lstm], name='sum')
l_forward_slice1 = SliceLayer(l_sum, -1, 1, name='slice1')
# Now, we can apply feed-forward layers as usual.
# We want the network to predict a classification for the sequence,
# so we'll use a the number of classes.
l_out = DenseLayer(
l_forward_slice1, num_units=output_classes, nonlinearity=las.nonlinearities.softmax, name='output')
return l_out
def _invert_Conv2DLayer(self,layer,feeder):
# Warning they are swapped here
feeder = self._put_rectifiers(feeder,layer)
feeder = self._get_normalised_relevance_layer(layer,feeder)
f_s = layer.filter_size
if layer.pad == 'same':
pad = 'same'
elif layer.pad == 'valid' or layer.pad == (0, 0):
pad = 'full'
else:
raise RuntimeError("Define your padding as full or same.")
# By definition the
# Flip filters must be on to be a proper deconvolution.
num_filters = L.get_output_shape(layer.input_layer)[1]
if layer.stride == (4,4):
# Todo: similar code gradient based explainers. Merge.
feeder = L.Upscale2DLayer(feeder, layer.stride, mode='dilate')
output_layer = L.Conv2DLayer(feeder,
num_filters=num_filters,
filter_size=f_s,
stride=1,
pad=pad,
nonlinearity=None,
b=None,
flip_filters=True)
conv_layer = output_layer
tmp = L.SliceLayer(output_layer, slice(0, -3), axis=3)
output_layer = L.SliceLayer(tmp, slice(0, -3), axis=2)
output_layer.W = conv_layer.W
else:
output_layer = L.Conv2DLayer(feeder,
num_filters=num_filters,
filter_size=f_s,
stride=1,
pad=pad,
nonlinearity=None,
b=None,
flip_filters=True)
W = output_layer.W
# Do the multiplication.
x_layer = L.ReshapeLayer(layer.input_layer,
(-1,)+L.get_output_shape(output_layer)[1:])
output_layer = L.ElemwiseMergeLayer(incomings=[x_layer, output_layer],
merge_function=T.mul)
output_layer.W = W
return output_layer
def _invert_Conv2DLayer(self, layer, feeder):
def _check_padding_same():
for s, p in zip(layer.filter_size, layer.pad):
if s % 2 != 1:
return False
elif s//2 != p:
return False
return True
# Warning they are swapped here.
feeder = self._put_rectifiers(feeder,layer)
f_s = layer.filter_size
if layer.pad == 'same' or _check_padding_same():
pad = 'same'
elif layer.pad == 'valid' or layer.pad == (0, 0):
pad = 'full'
else:
raise RuntimeError("Define your padding as full or same.")
# By definition the
# Flip filters must be on to be a proper deconvolution.
num_filters = L.get_output_shape(layer.input_layer)[1]
if layer.stride == (4,4):
# Todo: clean this!
print("Applying alexnet hack.")
feeder = L.Upscale2DLayer(feeder, layer.stride, mode='dilate')
output_layer = L.Conv2DLayer(feeder,
num_filters=num_filters,
filter_size=f_s,
stride=1, pad=pad,
nonlinearity=None, b=None,
flip_filters=True)
print("Applying alexnet hack part 2.")
conv_layer = output_layer
output_layer = L.SliceLayer(L.SliceLayer(output_layer,
slice(0,-3), axis=3),
slice(0,-3), axis=2)
output_layer.W = conv_layer.W
elif layer.stride == (2,2):
# Todo: clean this! Seems to be the same code as for AlexNet above.
print("Applying GoogLeNet hack.")
feeder = L.Upscale2DLayer(feeder, layer.stride, mode='dilate')
output_layer = L.Conv2DLayer(feeder,
num_filters=num_filters,
filter_size=f_s,
stride=1, pad=pad,
nonlinearity=None, b=None,
flip_filters=True)
else:
# Todo: clean this. Repetitions all over.
output_layer = L.Conv2DLayer(feeder,
num_filters=num_filters,
filter_size=f_s,
stride=1, pad=pad,
nonlinearity=None, b=None,
flip_filters=True)
return output_layer
def create_model(dbn, input_shape, input_var, mask_shape, mask_var,
lstm_size=250, output_classes=26):
dbn_layers = dbn.get_all_layers()
weights = []
biases = []
weights.append(dbn_layers[1].W.astype('float32'))
weights.append(dbn_layers[2].W.astype('float32'))
weights.append(dbn_layers[3].W.astype('float32'))
weights.append(dbn_layers[4].W.astype('float32'))
biases.append(dbn_layers[1].b.astype('float32'))
biases.append(dbn_layers[2].b.astype('float32'))
biases.append(dbn_layers[3].b.astype('float32'))
biases.append(dbn_layers[4].b.astype('float32'))
gate_parameters = Gate(
W_in=las.init.Orthogonal(), W_hid=las.init.Orthogonal(),
b=las.init.Constant(0.))
cell_parameters = Gate(
W_in=las.init.Orthogonal(), W_hid=las.init.Orthogonal(),
# Setting W_cell to None denotes that no cell connection will be used.
W_cell=None, b=las.init.Constant(0.),
# By convention, the cell nonlinearity is tanh in an LSTM.
nonlinearity=tanh)
l_in = InputLayer(input_shape, input_var, 'input')
l_mask = InputLayer(mask_shape, mask_var, 'mask')
symbolic_batchsize = l_in.input_var.shape[0]
symbolic_seqlen = l_in.input_var.shape[1]
l_reshape1 = ReshapeLayer(l_in, (-1, input_shape[-1]), name='reshape1')
l_encoder = create_pretrained_encoder(weights, biases, l_reshape1)
encoder_len = las.layers.get_output_shape(l_encoder)[-1]
l_reshape2 = ReshapeLayer(l_encoder, (symbolic_batchsize, symbolic_seqlen, encoder_len), name='reshape2')
# l_delta = DeltaLayer(l_reshape2, win, name='delta')
# l_lstm = create_lstm(l_reshape2, l_mask, lstm_size, cell_parameters, gate_parameters, 'lstm1')
l_lstm, l_lstm_back = create_blstm(l_reshape2, l_mask, lstm_size, cell_parameters, gate_parameters, 'lstm1')
# We'll combine the forward and backward layer output by summing.
# Merge layers take in lists of layers to merge as input.
l_sum1 = ElemwiseSumLayer([l_lstm, l_lstm_back], name='sum1')
l_forward_slice1 = SliceLayer(l_sum1, -1, 1, name='slice1')
# Now, we can apply feed-forward layers as usual.
# We want the network to predict a classification for the sequence,
# so we'll use a the number of classes.
l_out = DenseLayer(
l_forward_slice1, num_units=output_classes, nonlinearity=las.nonlinearities.softmax, name='output')
return l_out
def create_model_using_pretrained_encoder(weights, biases, input_shape, input_var, mask_shape, mask_var,
lstm_size=250, win=T.iscalar('theta'), output_classes=26,
w_init_fn=las.init.Orthogonal(),
use_peepholes=False, nonlinearities=rectify):
gate_parameters = Gate(
W_in=w_init_fn, W_hid=w_init_fn,
b=las.init.Constant(0.))
cell_parameters = Gate(
W_in=w_init_fn, W_hid=w_init_fn,
# Setting W_cell to None denotes that no cell connection will be used.
W_cell=None, b=las.init.Constant(0.),
# By convention, the cell nonlinearity is tanh in an LSTM.
nonlinearity=tanh)
l_in = InputLayer(input_shape, input_var, 'input')
l_mask = InputLayer(mask_shape, mask_var, 'mask')
symbolic_batchsize = l_in.input_var.shape[0]
symbolic_seqlen = l_in.input_var.shape[1]
l_reshape1 = ReshapeLayer(l_in, (-1, input_shape[-1]), name='reshape1')
l_encoder = create_pretrained_encoder(l_reshape1, weights, biases,
[2000, 1000, 500, 50],
[nonlinearities, nonlinearities, nonlinearities, linear],
['fc1', 'fc2', 'fc3', 'bottleneck'])
encoder_len = las.layers.get_output_shape(l_encoder)[-1]
l_reshape2 = ReshapeLayer(l_encoder, (symbolic_batchsize, symbolic_seqlen, encoder_len), name='reshape2')
l_delta = DeltaLayer(l_reshape2, win, name='delta')
l_lstm, l_lstm_back = create_blstm(l_delta, l_mask, lstm_size, cell_parameters, gate_parameters, 'bstm1',
use_peepholes)
# We'll combine the forward and backward layer output by summing.
# Merge layers take in lists of layers to merge as input.
l_sum1 = ElemwiseSumLayer([l_lstm, l_lstm_back], name='sum1')
l_forward_slice1 = SliceLayer(l_sum1, -1, 1, name='slice1')
# Now, we can apply feed-forward layers as usual.
# We want the network to predict a classification for the sequence,
# so we'll use a the number of classes.
l_out = DenseLayer(
l_forward_slice1, num_units=output_classes, nonlinearity=las.nonlinearities.softmax, name='output')
return l_out