def __init__(self, l_in, bgr_mean=np.array([103.939, 116.779, 123.68]),
data_format='bc01', **kwargs):
"""A Layer to normalize and convert images from RGB to BGR
This layer converts images from RGB to BGR to adapt to Caffe
that uses OpenCV, which uses BGR. It also subtracts the
per-pixel mean. From:
https://github.com/fvisin/reseg/blob/variable_size_images/vgg16.py
Parameters
----------
l_in : :class:``lasagne.layers.Layer``
The incoming layer, typically an
:class:``lasagne.layers.InputLayer``
bgr_mean : iterable of 3 ints
The mean of each channel. By default, the ImageNet
mean values are used.
data_format : str
The format of l_in, either `b01c` (batch, rows, cols,
channels) or `bc01` (batch, channels, rows, cols)
"""
super(RGBtoBGRLayer, self).__init__(l_in, **kwargs)
assert data_format in ['bc01', 'b01c']
self.l_in = l_in
floatX = theano.config.floatX
self.bgr_mean = bgr_mean.astype(floatX)
self.data_format = data_format
python类Layer()的实例源码
def get_output_for(self, inputs, **kwargs):
input = inputs[0]
input_word = T.flatten(inputs[1])
word_dropout = inputs[2]
# Apply word embedding
sentence_rep = self.SemMem.get_output_for([input, word_dropout])
# Apply GRU Layer
gru_outs = self.GRU.get_output_for([sentence_rep])
# Extract candidate fact from GRU's output by input_word variable
# resolving input with adtional word
# e.g. John when to the hallway nil nil nil -> [GRU1, ... ,GRU8] -> GRU5
candidate_facts = T.reshape(
gru_outs[T.arange(gru_outs.shape[0],dtype='int32'), input_word-1],
(-1, input.shape[1], self.hid_state_size))
return candidate_facts
def __init__(self, incoming, pool_size, stride=None, pad=(0, 0),
ignore_border=True, centered=True, **kwargs):
"""A padded pooling layer
Parameters
----------
incoming : lasagne.layers.Layer
The input layer
pool_size : int
The size of the pooling
stride : int or iterable of int
The stride or subsampling of the convolution
pad : int, iterable of int, ``full``, ``same`` or ``valid``
**Ignored!** Kept for compatibility with the
:class:``lasagne.layers.Pool2DLayer``
ignore_border : bool
See :class:``lasagne.layers.Pool2DLayer``
centered : bool
If True, the padding will be added on both sides. If False
the zero padding will be applied on the upper left side.
**kwargs
Any additional keyword arguments are passed to the Layer
superclass
"""
self.centered = centered
if pad not in [0, (0, 0), [0, 0]]:
warnings.warn('The specified padding will be ignored',
RuntimeWarning)
super(PaddedPool2DLayer, self).__init__(incoming,
pool_size,
stride,
pad,
ignore_border,
**kwargs)
if self.input_shape[2:] != (None, None):
warnings.warn('This Layer should only be used when the size of '
'the image is not known', RuntimeWarning)
def __init__(
self,
l_in,
patch_size,
stride,
data_format='bc01',
centered=True,
name='',
**kwargs):
"""A Layer that zero-pads the input
Parameters
----------
l_in : lasagne.layers.Layer
The input layer
patch_size : iterable of int
The patch size
stride : iterable of int
The stride
data_format : string
The format of l_in, either `b01c` (batch, rows, cols,
channels) or `bc01` (batch, channels, rows, cols)
centered : bool
If True, the padding will be added on both sides. If False
the zero padding will be applied on the upper left side.
name = string
The name of the layer, optional
"""
super(DynamicPaddingLayer, self).__init__(l_in, name, **kwargs)
self.l_in = l_in
self.patch_size = patch_size
self.stride = stride
self.data_format = data_format
self.centered = centered
self.name = name
def get_equivalent_input_padding(layer, layers_args=[]):
"""Compute the equivalent padding in the input layer
A function to compute the equivalent padding of a sequence of
convolutional and pooling layers. It memorizes the padding
of all the Layers up to the first InputLayer.
It then computes what would be the equivalent padding in the Layer
immediately before the chain of Layers that is being taken into account.
"""
# Initialize the DynamicPadding layers
lasagne.layers.get_output(layer)
# Loop through conv and pool to collect data
all_layers = get_all_layers(layer)
# while(not isinstance(layer, (InputLayer))):
for layer in all_layers:
# Note: stride is numerical, but pad *could* be symbolic
try:
pad, stride = (layer.pad, layer.stride)
if isinstance(pad, int):
pad = pad, pad
if isinstance(stride, int):
stride = stride, stride
layers_args.append((pad, stride))
except(AttributeError):
pass
# Loop backward to compute the equivalent padding in the input
# layer
tot_pad = T.zeros(2)
pad_factor = T.ones(2)
while(layers_args):
pad, stride = layers_args.pop()
tot_pad += pad * pad_factor
pad_factor *= stride
return tot_pad
def get_output_shape_for(self, input_shapes):
# The shape of the input to this layer will be the first element
# of input_shapes, whether or not a mask input is being used.
input_shape = input_shapes[0]
# When only_return_final is true, the second (sequence step) dimension
# will be flattened
if self.only_return_final:
return input_shape[0], self.num_units
# Otherwise, the shape will be (n_batch, n_steps, num_units)
else:
return input_shape[0], input_shape[1], self.num_units
# Layer Normalization
def layer_iter(self):
for k,v in self.__dict__.items():
if isinstance(v, Layer):
yield (k,v)
def batch_norm(layer, **kwargs):
"""
Apply batch normalization to an existing layer. This is a convenience
function modifying an existing layer to include batch normalization: It
will steal the layer's nonlinearity if there is one (effectively
introducing the normalization right before the nonlinearity), remove
the layer's bias if there is one (because it would be redundant), and add
a :class:`BatchNormLayer` and :class:`NonlinearityLayer` on top.
Parameters
----------
layer : A :class:`Layer` instance
The layer to apply the normalization to; note that it will be
irreversibly modified as specified above
**kwargs
Any additional keyword arguments are passed on to the
:class:`BatchNormLayer` constructor.
Returns
-------
BatchNormLayer or NonlinearityLayer instance
A batch normalization layer stacked on the given modified `layer`, or
a nonlinearity layer stacked on top of both if `layer` was nonlinear.
Examples
--------
Just wrap any layer into a :func:`batch_norm` call on creating it:
>>> from lasagne.layers import InputLayer, DenseLayer, batch_norm
>>> from lasagne.nonlinearities import tanh
>>> l1 = InputLayer((64, 768))
>>> l2 = batch_norm(DenseLayer(l1, num_units=500, nonlinearity=tanh))
This introduces batch normalization right before its nonlinearity:
>>> from lasagne.layers import get_all_layers
>>> [l.__class__.__name__ for l in get_all_layers(l2)]
['InputLayer', 'DenseLayer', 'BatchNormLayer', 'NonlinearityLayer']
"""
nonlinearity = getattr(layer, 'nonlinearity', None)
if nonlinearity is not None:
layer.nonlinearity = lasagne.nonlinearities.identity
if hasattr(layer, 'b') and layer.b is not None:
del layer.params[layer.b]
layer.b = None
layer = BatchNormLayer(layer, **kwargs)
if nonlinearity is not None:
layer = L.NonlinearityLayer(layer, nonlinearity)
return layer
def __init__(self, incoming, num_units, ingate=Gate(), forgetgate=Gate(),
cell=Gate(W_cell=None, nonlinearity=nonlinearities.tanh), outgate=Gate(),
nonlinearity=nonlinearities.tanh, cell_init=init.Constant(0.), hid_init=init.Constant(0.),
backwards=False, learn_init=False, peepholes=True, gradient_steps=-1, grad_clipping=0,
precompute_input=True, mask_input=None,
encoder_mask_input=None, attention=False, word_by_word=False, **kwargs):
super(CustomLSTMDecoder, self).__init__(incoming, num_units, ingate, forgetgate, cell, outgate, nonlinearity,
cell_init, hid_init, backwards, learn_init, peepholes, gradient_steps,
grad_clipping, False, precompute_input, mask_input, True,
**kwargs)
self.attention = attention
self.word_by_word = word_by_word
# encoder mask
self.encoder_mask_incoming_index = -1
if encoder_mask_input is not None:
self.input_layers.append(encoder_mask_input)
self.input_shapes.append(encoder_mask_input.output_shape)
self.encoder_mask_incoming_index = len(self.input_layers) - 1
# check encoder
if not isinstance(self.cell_init, CustomLSTMEncoder) \
or self.num_units != self.cell_init.num_units:
raise ValueError('cell_init must be CustomLSTMEncoder'
' and num_units should equal')
self.r_init = None
self.r_init = self.add_param(init.Constant(0.),
(1, num_units), name="r_init",
trainable=False, regularizable=False)
if self.word_by_word:
# rewrites
self.attention = True
if self.attention:
if not isinstance(encoder_mask_input, lasagne.layers.Layer):
raise ValueError('Attention mechnism needs encoder mask layer')
# initializes attention weights
self.W_y_attend = self.add_param(init.Normal(0.1), (num_units, num_units), 'V_pointer')
self.W_h_attend = self.add_param(init.Normal(0.1), (num_units, num_units), 'W_h_attend')
# doesn't need transpose
self.w_attend = self.add_param(init.Normal(0.1), (num_units, 1), 'v_pointer')
self.W_p_attend = self.add_param(init.Normal(0.1), (num_units, num_units), 'W_p_attend')
self.W_x_attend = self.add_param(init.Normal(0.1), (num_units, num_units), 'W_x_attend')
if self.word_by_word:
self.W_r_attend = self.add_param(init.Normal(0.1), (num_units, num_units), 'W_r_attend')
self.W_t_attend = self.add_param(init.Normal(0.1), (num_units, num_units), 'W_t_attend')
def __init__(self, incoming, num_filters, filter_size, stride=(1, 1),
pad=0, untie_biases=False, W=init.GlorotUniform(),
b=init.Constant(0.), nonlinearity=nonlinearities.rectify,
flip_filters=True, convolution=theano.tensor.nnet.conv2d,
centered=True, **kwargs):
"""A padded convolutional layer
Note
----
If used in place of a :class:``lasagne.layers.Conv2DLayer`` be
sure to specify `flag_filters=False`, which is the default for
that layer
Parameters
----------
incoming : lasagne.layers.Layer
The input layer
num_filters : int
The number of filters or kernels of the convolution
filter_size : int or iterable of int
The size of the filters
stride : int or iterable of int
The stride or subsampling of the convolution
pad : int, iterable of int, ``full``, ``same`` or ``valid``
**Ignored!** Kept for compatibility with the
:class:``lasagne.layers.Conv2DLayer``
untie_biases : bool
See :class:``lasagne.layers.Conv2DLayer``
W : Theano shared variable, expression, numpy array or callable
See :class:``lasagne.layers.Conv2DLayer``
b : Theano shared variable, expression, numpy array, callable or None
See :class:``lasagne.layers.Conv2DLayer``
nonlinearity : callable or None
See :class:``lasagne.layers.Conv2DLayer``
flip_filters : bool
See :class:``lasagne.layers.Conv2DLayer``
convolution : callable
See :class:``lasagne.layers.Conv2DLayer``
centered : bool
If True, the padding will be added on both sides. If False
the zero padding will be applied on the upper left side.
**kwargs
Any additional keyword arguments are passed to the
:class:``lasagne.layers.Layer`` superclass
"""
self.centered = centered
if pad not in [0, (0, 0), [0, 0]]:
warnings.warn('The specified padding will be ignored',
RuntimeWarning)
super(PaddedConv2DLayer, self).__init__(incoming, num_filters,
filter_size, stride, pad,
untie_biases, W, b,
nonlinearity, flip_filters,
**kwargs)
if self.input_shape[2:] != (None, None):
warnings.warn('This Layer should only be used when the size of '
'the image is not known', RuntimeWarning)
def batch_norm(layer, **kwargs):
"""
Apply batch normalization to an existing layer. This is a convenience
function modifying an existing layer to include batch normalization: It
will steal the layer's nonlinearity if there is one (effectively
introducing the normalization right before the nonlinearity), remove
the layer's bias if there is one (because it would be redundant), and add
a :class:`BatchNormLayer` and :class:`NonlinearityLayer` on top.
Parameters
----------
layer : A :class:`Layer` instance
The layer to apply the normalization to; note that it will be
irreversibly modified as specified above
**kwargs
Any additional keyword arguments are passed on to the
:class:`BatchNormLayer` constructor.
Returns
-------
BatchNormLayer or NonlinearityLayer instance
A batch normalization layer stacked on the given modified `layer`, or
a nonlinearity layer stacked on top of both if `layer` was nonlinear.
Examples
--------
Just wrap any layer into a :func:`batch_norm` call on creating it:
>>> from lasagne.layers import InputLayer, DenseLayer, batch_norm
>>> from lasagne.nonlinearities import tanh
>>> l1 = InputLayer((64, 768))
>>> l2 = batch_norm(DenseLayer(l1, num_units=500, nonlinearity=tanh))
This introduces batch normalization right before its nonlinearity:
>>> from lasagne.layers import get_all_layers
>>> [l.__class__.__name__ for l in get_all_layers(l2)]
['InputLayer', 'DenseLayer', 'BatchNormLayer', 'NonlinearityLayer']
"""
nonlinearity = getattr(layer, 'nonlinearity', None)
if nonlinearity is not None:
layer.nonlinearity = lasagne.nonlinearities.identity
if hasattr(layer, 'b') and layer.b is not None:
del layer.params[layer.b]
layer.b = None
layer = BatchNormLayer(layer, **kwargs)
if nonlinearity is not None:
layer = L.NonlinearityLayer(layer, nonlinearity)
return layer
def batch_norm(layer, **kwargs):
"""
Apply batch normalization to an existing layer. This is a convenience
function modifying an existing layer to include batch normalization: It
will steal the layer's nonlinearity if there is one (effectively
introducing the normalization right before the nonlinearity), remove
the layer's bias if there is one (because it would be redundant), and add
a :class:`BatchNormLayer` and :class:`NonlinearityLayer` on top.
Parameters
----------
layer : A :class:`Layer` instance
The layer to apply the normalization to; note that it will be
irreversibly modified as specified above
**kwargs
Any additional keyword arguments are passed on to the
:class:`BatchNormLayer` constructor.
Returns
-------
BatchNormLayer or NonlinearityLayer instance
A batch normalization layer stacked on the given modified `layer`, or
a nonlinearity layer stacked on top of both if `layer` was nonlinear.
Examples
--------
Just wrap any layer into a :func:`batch_norm` call on creating it:
>>> from lasagne.layers import InputLayer, DenseLayer, batch_norm
>>> from lasagne.nonlinearities import tanh
>>> l1 = InputLayer((64, 768))
>>> l2 = batch_norm(DenseLayer(l1, num_units=500, nonlinearity=tanh))
This introduces batch normalization right before its nonlinearity:
>>> from lasagne.layers import get_all_layers
>>> [l.__class__.__name__ for l in get_all_layers(l2)]
['InputLayer', 'DenseLayer', 'BatchNormLayer', 'NonlinearityLayer']
"""
nonlinearity = getattr(layer, 'nonlinearity', None)
if nonlinearity is not None:
layer.nonlinearity = nonlinearities.identity
if hasattr(layer, 'b') and layer.b is not None:
del layer.params[layer.b]
layer.b = None
layer = BatchNormLayer(layer, **kwargs)
if nonlinearity is not None:
from lasagne.layers import NonlinearityLayer
layer = NonlinearityLayer(layer, nonlinearity)
return layer
def get_output_for(self, inputs, **kwargs):
"""
Compute this layer's output function given a symbolic input variable
Parameters
----------
inputs : list of theano.TensorType
`inputs[0]` should always be the symbolic input variable. When
this layer has a mask input (i.e. was instantiated with
`mask_input != None`, indicating that the lengths of sequences in
each batch vary), `inputs` should have length 2, where `inputs[1]`
is the `mask`. The `mask` should be supplied as a Theano variable
denoting whether each time step in each sequence in the batch is
part of the sequence or not. `mask` should be a matrix of shape
``(n_batch, n_time_steps)`` where ``mask[i, j] = 1`` when ``j <=
(length of sequence i)`` and ``mask[i, j] = 0`` when ``j > (length
of sequence i)``. When the hidden state of this layer is to be
pre-filled (i.e. was set to a :class:`Layer` instance) `inputs`
should have length at least 2, and `inputs[-1]` is the hidden state
to prefill with. When the cell state of this layer is to be
pre-filled (i.e. was set to a :class:`Layer` instance) `inputs`
should have length at least 2, and `inputs[-1]` is the hidden state
to prefill with. When both the cell state and the hidden state are
being pre-filled `inputs[-2]` is the hidden state, while
`inputs[-1]` is the cell state.
Returns
-------
hid_out : theano.TensorType
Symbolic output variable.
"""
_, hid_out = self.__lstm_fun__(inputs, **kwargs)
# When it is requested that we only return the final sequence step,
# we need to slice it out immediately after scan is applied
if self.only_return_final:
hid_out = hid_out[-1]
else:
# dimshuffle back to (n_batch, n_time_steps, n_features))
hid_out = hid_out.dimshuffle(1, 0, 2)
# if scan is backward reverse the output
if self.backwards:
hid_out = hid_out[:, ::-1]
return hid_out
def get_hid_cell_for(self, inputs, **kwargs):
"""
Compute this layer's final hidden output and cell given a symbolic
input variable
Parameters
----------
inputs : list of theano.TensorType
`inputs[0]` should always be the symbolic input variable. When
this layer has a mask input (i.e. was instantiated with
`mask_input != None`, indicating that the lengths of sequences in
each batch vary), `inputs` should have length 2, where `inputs[1]`
is the `mask`. The `mask` should be supplied as a Theano variable
denoting whether each time step in each sequence in the batch is
part of the sequence or not. `mask` should be a matrix of shape
``(n_batch, n_time_steps)`` where ``mask[i, j] = 1`` when ``j <=
(length of sequence i)`` and ``mask[i, j] = 0`` when ``j > (length
of sequence i)``. When the hidden state of this layer is to be
pre-filled (i.e. was set to a :class:`Layer` instance) `inputs`
should have length at least 2, and `inputs[-1]` is the hidden state
to prefill with. When the cell state of this layer is to be
pre-filled (i.e. was set to a :class:`Layer` instance) `inputs`
should have length at least 2, and `inputs[-1]` is the hidden state
to prefill with. When both the cell state and the hidden state are
being pre-filled `inputs[-2]` is the hidden state, while
`inputs[-1]` is the cell state.
Returns
-------
hid_out : theano.TensorType
Symbolic output variable.
cell_out : theano.TensorType
Symbolic output variable.
"""
cell_out, hid_out = self.__lstm_fun__(inputs, **kwargs)
# When it is requested that we only return the final sequence step,
# we need to slice it out immediately after scan is applied
if self.only_return_final:
hid_out = hid_out[-1]
cell_out = cell_out[-1]
else:
# dimshuffle back to (n_batch, n_time_steps, n_features))
hid_out = hid_out.dimshuffle(1, 0, 2)
cell_out = cell_out.dimshuffle(1, 0, 2)
# if scan is backward reverse the output
if self.backwards:
hid_out = hid_out[:, ::-1]
cell_out = cell_out[:, ::-1]
return hid_out, cell_out
def get_output_for(self, inputs, **kwargs):
"""
Compute this layer's output function given a symbolic input variable
Parameters
----------
inputs : list of theano.TensorType
`inputs[0]` should always be the symbolic input variable. When
this layer has a mask input (i.e. was instantiated with
`mask_input != None`, indicating that the lengths of sequences in
each batch vary), `inputs` should have length 2, where `inputs[1]`
is the `mask`. The `mask` should be supplied as a Theano variable
denoting whether each time step in each sequence in the batch is
part of the sequence or not. `mask` should be a matrix of shape
``(n_batch, n_time_steps)`` where ``mask[i, j] = 1`` when ``j <=
(length of sequence i)`` and ``mask[i, j] = 0`` when ``j > (length
of sequence i)``. When the hidden state of this layer is to be
pre-filled (i.e. was set to a :class:`Layer` instance) `inputs`
should have length at least 2, and `inputs[-1]` is the hidden state
to prefill with. When the cell state of this layer is to be
pre-filled (i.e. was set to a :class:`Layer` instance) `inputs`
should have length at least 2, and `inputs[-1]` is the hidden state
to prefill with. When both the cell state and the hidden state are
being pre-filled `inputs[-2]` is the hidden state, while
`inputs[-1]` is the cell state.
Returns
-------
hid_out : theano.TensorType
Symbolic output variable.
"""
_, hid_out = self.__lstm_fun__(inputs, **kwargs)
# When it is requested that we only return the final sequence step,
# we need to slice it out immediately after scan is applied
if self.only_return_final:
hid_out = hid_out[-1]
else:
# dimshuffle back to (n_batch, n_time_steps, n_features))
hid_out = hid_out.dimshuffle(1, 0, 2)
# if scan is backward reverse the output
if self.backwards:
hid_out = hid_out[:, ::-1]
return hid_out
def get_hid_cell_for(self, inputs, **kwargs):
"""
Compute this layer's final hidden output and cell given a symbolic
input variable
Parameters
----------
inputs : list of theano.TensorType
`inputs[0]` should always be the symbolic input variable. When
this layer has a mask input (i.e. was instantiated with
`mask_input != None`, indicating that the lengths of sequences in
each batch vary), `inputs` should have length 2, where `inputs[1]`
is the `mask`. The `mask` should be supplied as a Theano variable
denoting whether each time step in each sequence in the batch is
part of the sequence or not. `mask` should be a matrix of shape
``(n_batch, n_time_steps)`` where ``mask[i, j] = 1`` when ``j <=
(length of sequence i)`` and ``mask[i, j] = 0`` when ``j > (length
of sequence i)``. When the hidden state of this layer is to be
pre-filled (i.e. was set to a :class:`Layer` instance) `inputs`
should have length at least 2, and `inputs[-1]` is the hidden state
to prefill with. When the cell state of this layer is to be
pre-filled (i.e. was set to a :class:`Layer` instance) `inputs`
should have length at least 2, and `inputs[-1]` is the hidden state
to prefill with. When both the cell state and the hidden state are
being pre-filled `inputs[-2]` is the hidden state, while
`inputs[-1]` is the cell state.
Returns
-------
hid_out : theano.TensorType
Symbolic output variable.
cell_out : theano.TensorType
Symbolic output variable.
"""
cell_out, hid_out = self.__lstm_fun__(inputs, **kwargs)
# When it is requested that we only return the final sequence step,
# we need to slice it out immediately after scan is applied
if self.only_return_final:
hid_out = hid_out[-1]
cell_out = cell_out[-1]
else:
# dimshuffle back to (n_batch, n_time_steps, n_features))
hid_out = hid_out.dimshuffle(1, 0, 2)
cell_out = cell_out.dimshuffle(1, 0, 2)
# if scan is backward reverse the output
if self.backwards:
hid_out = hid_out[:, ::-1]
cell_out = cell_out[:, ::-1]
return hid_out, cell_out
def test_lstm_hid_init_layer_eval():
# Test `hid_init` as a `Layer` with some dummy input. Compare the output of
# a network with a `Layer` as input to `hid_init` to a network with a
# `np.array` as input to `hid_init`
n_units = 7
n_test_cases = 2
in_shp = (n_test_cases, 2, 3)
in_h_shp = (1, n_units)
in_cell_shp = (1, n_units)
# dummy inputs
X_test = np.ones(in_shp, dtype=theano.config.floatX)
Xh_test = np.ones(in_h_shp, dtype=theano.config.floatX)
Xc_test = np.ones(in_cell_shp, dtype=theano.config.floatX)
Xh_test_batch = np.tile(Xh_test, (n_test_cases, 1))
Xc_test_batch = np.tile(Xc_test, (n_test_cases, 1))
# network with `Layer` initializer for hid_init
l_inp = InputLayer(in_shp)
l_inp_h = InputLayer(in_h_shp)
l_inp_cell = InputLayer(in_cell_shp)
l_rec_inp_layer = LSTMLayer(l_inp, n_units, hid_init=l_inp_h,
cell_init=l_inp_cell, nonlinearity=None)
# network with `np.array` initializer for hid_init
l_rec_nparray = LSTMLayer(l_inp, n_units, hid_init=Xh_test,
cell_init=Xc_test, nonlinearity=None)
# copy network parameters from l_rec_inp_layer to l_rec_nparray
l_il_param = dict([(p.name, p) for p in l_rec_inp_layer.get_params()])
l_rn_param = dict([(p.name, p) for p in l_rec_nparray.get_params()])
for k, v in l_rn_param.items():
if k in l_il_param:
v.set_value(l_il_param[k].get_value())
# build the theano functions
X = T.tensor3()
Xh = T.matrix()
Xc = T.matrix()
output_inp_layer = lasagne.layers.get_output(l_rec_inp_layer,
{l_inp: X, l_inp_h:
Xh, l_inp_cell: Xc})
output_nparray = lasagne.layers.get_output(l_rec_nparray, {l_inp: X})
# test both nets with dummy input
output_val_inp_layer = output_inp_layer.eval({X: X_test, Xh: Xh_test_batch,
Xc: Xc_test_batch})
output_val_nparray = output_nparray.eval({X: X_test})
# check output given `Layer` is the same as with `np.array`
assert np.allclose(output_val_inp_layer, output_val_nparray)
def batch_norm(layer, **kwargs):
"""
Apply batch normalization to an existing layer. This is a convenience
function modifying an existing layer to include batch normalization: It
will steal the layer's nonlinearity if there is one (effectively
introducing the normalization right before the nonlinearity), remove
the layer's bias if there is one (because it would be redundant), and add
a :class:`BatchNormLayer` and :class:`NonlinearityLayer` on top.
Parameters
----------
layer : A :class:`Layer` instance
The layer to apply the normalization to; note that it will be
irreversibly modified as specified above
**kwargs
Any additional keyword arguments are passed on to the
:class:`BatchNormLayer` constructor.
Returns
-------
BatchNormLayer or NonlinearityLayer instance
A batch normalization layer stacked on the given modified `layer`, or
a nonlinearity layer stacked on top of both if `layer` was nonlinear.
Examples
--------
Just wrap any layer into a :func:`batch_norm` call on creating it:
>>> from lasagne.layers import InputLayer, DenseLayer, batch_norm
>>> from lasagne.nonlinearities import tanh
>>> l1 = InputLayer((64, 768))
>>> l2 = batch_norm(DenseLayer(l1, num_units=500, nonlinearity=tanh))
This introduces batch normalization right before its nonlinearity:
>>> from lasagne.layers import get_all_layers
>>> [l.__class__.__name__ for l in get_all_layers(l2)]
['InputLayer', 'DenseLayer', 'BatchNormLayer', 'NonlinearityLayer']
"""
nonlinearity = getattr(layer, 'nonlinearity', None)
if nonlinearity is not None:
layer.nonlinearity = lasagne.nonlinearities.identity
if hasattr(layer, 'b') and layer.b is not None:
del layer.params[layer.b]
layer.b = None
layer = BatchNormLayer(layer, **kwargs)
if nonlinearity is not None:
layer = L.NonlinearityLayer(layer, nonlinearity)
return layer
def batch_norm(layer, **kwargs):
"""
Apply batch normalization to an existing layer. This is a convenience
function modifying an existing layer to include batch normalization: It
will steal the layer's nonlinearity if there is one (effectively
introducing the normalization right before the nonlinearity), remove
the layer's bias if there is one (because it would be redundant), and add
a :class:`BatchNormLayer` and :class:`NonlinearityLayer` on top.
Parameters
----------
layer : A :class:`Layer` instance
The layer to apply the normalization to; note that it will be
irreversibly modified as specified above
**kwargs
Any additional keyword arguments are passed on to the
:class:`BatchNormLayer` constructor.
Returns
-------
BatchNormLayer or NonlinearityLayer instance
A batch normalization layer stacked on the given modified `layer`, or
a nonlinearity layer stacked on top of both if `layer` was nonlinear.
Examples
--------
Just wrap any layer into a :func:`batch_norm` call on creating it:
>>> from lasagne.layers import InputLayer, DenseLayer, batch_norm
>>> from lasagne.nonlinearities import tanh
>>> l1 = InputLayer((64, 768))
>>> l2 = batch_norm(DenseLayer(l1, num_units=500, nonlinearity=tanh))
This introduces batch normalization right before its nonlinearity:
>>> from lasagne.layers import get_all_layers
>>> [l.__class__.__name__ for l in get_all_layers(l2)]
['InputLayer', 'DenseLayer', 'BatchNormLayer', 'NonlinearityLayer']
"""
nonlinearity = getattr(layer, 'nonlinearity', None)
if nonlinearity is not None:
layer.nonlinearity = lasagne.nonlinearities.identity
if hasattr(layer, 'b') and layer.b is not None:
del layer.params[layer.b]
layer.b = None
layer = BatchNormLayer(layer, **kwargs)
if nonlinearity is not None:
layer = L.NonlinearityLayer(layer, nonlinearity)
return layer