python类DenseLayer()的实例源码

convolutional_neural_network.py 文件源码 项目:kaggle-breast-cancer-prediction 作者: sirCamp 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def CNN(n_epochs):
    net1 = NeuralNet(
        layers=[
            ('input', layers.InputLayer),
            ('conv1', layers.Conv2DLayer),  # Convolutional layer.  Params defined below
            ('pool1', layers.MaxPool2DLayer),  # Like downsampling, for execution speed
            ('conv2', layers.Conv2DLayer),
            ('hidden3', layers.DenseLayer),
            ('output', layers.DenseLayer),
        ],

        input_shape=(None, 1, 6, 5),
        conv1_num_filters=8,
        conv1_filter_size=(3, 3),
        conv1_nonlinearity=lasagne.nonlinearities.rectify,

        pool1_pool_size=(2, 2),

        conv2_num_filters=12,
        conv2_filter_size=(1, 1),
        conv2_nonlinearity=lasagne.nonlinearities.rectify,

        hidden3_num_units=1000,
        output_num_units=2,
        output_nonlinearity=lasagne.nonlinearities.softmax,

        update_learning_rate=0.0001,
        update_momentum=0.9,

        max_epochs=n_epochs,
        verbose=0,
    )
    return net1
gradient_based.py 文件源码 项目:nn-patterns 作者: pikinder 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def _set_inverse_parameters(self, patterns=None):
        for l in L.get_all_layers(self.output_layer):
            if type(l) is L.Conv2DLayer:
                W = l.W.get_value()
                if l.flip_filters:
                    W = W[:,:,::-1,::-1]
                W = W.transpose(1,0,2,3)
                self.inverse_map[l].W.set_value(W)
            elif type(l) is L.DenseLayer:
                self.inverse_map[l].W.set_value(l.W.get_value().T)
relevance_based.py 文件源码 项目:nn-patterns 作者: pikinder 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _set_inverse_parameters(self, patterns=None):
        for l in L.get_all_layers(self.output_layer):
            if type(l) is L.Conv2DLayer:
                W = l.W.get_value()
                if l.flip_filters:
                    W = W[:,:,::-1,::-1]
                W = W.transpose(1,0,2,3)
                self.inverse_map[l].W.set_value(W)
            elif type(l) is L.DenseLayer:
                self.inverse_map[l].W.set_value(l.W.get_value().T)
relevance_based.py 文件源码 项目:nn-patterns 作者: pikinder 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _get_normalised_relevance_layer(self, layer, feeder):

        def add_epsilon(Zs):
            tmp = (T.cast(Zs >= 0, theano.config.floatX)*2.0 - 1.0)
            return  Zs + self.epsilon * tmp

        if isinstance(layer, L.DenseLayer):
            forward_layer = L.DenseLayer(layer.input_layer,
                                         layer.num_units,
                                         W=layer.W,
                                         b=layer.b,
                                         nonlinearity=None)
        elif isinstance(layer, L.Conv2DLayer):
            forward_layer = L.Conv2DLayer(layer.input_layer,
                                          num_filters=layer.num_filters,
                                          W=layer.W,
                                          b=layer.b,
                                          stride=layer.stride,
                                          filter_size=layer.filter_size,
                                          flip_filters=layer.flip_filters,
                                          untie_biases=layer.untie_biases,
                                          pad=layer.pad,
                                          nonlinearity=None)
        else:
            raise NotImplementedError()

        forward_layer = L.ExpressionLayer(forward_layer,
                                          lambda x: 1.0 / add_epsilon(x))
        feeder = L.ElemwiseMergeLayer([forward_layer, feeder],
                                      merge_function=T.mul)

        return feeder
relevance_based.py 文件源码 项目:nn-patterns 作者: pikinder 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def _invert_DenseLayer(self,layer,feeder):
        # Warning they are swapped here
        feeder = self._put_rectifiers(feeder, layer)
        feeder = self._get_normalised_relevance_layer(layer, feeder)

        output_units = np.prod(L.get_output_shape(layer.input_layer)[1:])
        output_layer = L.DenseLayer(feeder, num_units=output_units)
        W = output_layer.W
        tmp_shape = np.asarray((-1,)+L.get_output_shape(output_layer)[1:])
        x_layer = L.ReshapeLayer(layer.input_layer, tmp_shape.tolist())
        output_layer = L.ElemwiseMergeLayer(incomings=[x_layer, output_layer],
                                            merge_function=T.mul)
        output_layer.W = W
        return output_layer
base.py 文件源码 项目:nn-patterns 作者: pikinder 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _invert_DenseLayer(self, layer, feeder):
        # Warning they are swapped here
        feeder = self._put_rectifiers(feeder, layer)
        output_units = np.prod(L.get_output_shape(layer.input_layer)[1:])
        output_layer = L.DenseLayer(feeder,
                                    num_units=output_units,
                                    nonlinearity=None, b=None)
        return output_layer
base.py 文件源码 项目:nn-patterns 作者: pikinder 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _invert_layer(self, layer, feeder):
        layer_type = type(layer)

        if L.get_output_shape(feeder) != L.get_output_shape(layer):
            feeder = L.ReshapeLayer(feeder, (-1,)+L.get_output_shape(layer)[1:])
        if layer_type is L.InputLayer:
            return self._invert_InputLayer(layer, feeder)
        elif layer_type is L.FlattenLayer:
            return self._invert_FlattenLayer(layer, feeder)
        elif layer_type is L.DenseLayer:
            return self._invert_DenseLayer(layer, feeder)
        elif layer_type is L.Conv2DLayer:
            return self._invert_Conv2DLayer(layer, feeder)
        elif layer_type is L.DropoutLayer:
            return self._invert_DropoutLayer(layer, feeder)
        elif layer_type in [L.MaxPool2DLayer, L.MaxPool1DLayer]:
            return self._invert_MaxPoolingLayer(layer, feeder)
        elif layer_type is L.PadLayer:
            return self._invert_PadLayer(layer, feeder)
        elif layer_type is L.SliceLayer:
            return self._invert_SliceLayer(layer, feeder)
        elif layer_type is L.LocalResponseNormalization2DLayer:
            return self._invert_LocalResponseNormalisation2DLayer(layer, feeder)
        elif layer_type is L.GlobalPoolLayer:
            return self._invert_GlobalPoolLayer(layer, feeder)
        else:
            return self._invert_UnknownLayer(layer, feeder)
base.py 文件源码 项目:nn-patterns 作者: pikinder 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def _collect_layers(self):
        self.all_layers = L.get_all_layers(self.output_layer)
        ret = [l for l in self.all_layers if
                type(l) in [L.DenseLayer, L.Conv2DLayer]]

        return ret
combined.py 文件源码 项目:nn-patterns 作者: pikinder 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def _get_split(self, layer,
                   deterministic=True, conv_all_patches=True, **kwargs):

        # Get the patches and the outputs without the non-linearities.
        if type(layer) is L.DenseLayer:
            x, y = putils.get_dense_xy(layer, deterministic)
        elif type(layer) is L.Conv2DLayer:
            if conv_all_patches is True:
                x, y = putils.get_conv_xy_all(layer, deterministic)
            else:
                x, y = putils.get_conv_xy(layer, deterministic)
        else:
            raise ValueError("Unknown layer as input")

        # Create an output dictionary
        outputs = dict()

        for name, fun in subtypes:
            outputs[name] = dict()
            mrk_y = 1.0* T.cast(fun(y), dtype=theano.config.floatX)  # (N,O)
            y_current = y*mrk_y # This has a binary mask
            cnt_y = T.shape_padaxis(T.sum(mrk_y, axis=0), axis=0)  # (1,O)
            norm = T.maximum(cnt_y, 1.)

            # Count how many datapoints are considered
            outputs[name]['cnt'] = cnt_y

            # The mean of the current batch
            outputs[name]['m_y'] = T.shape_padaxis(y_current.sum(axis=0), axis=0) / norm  # (1,O) mean output for batch
            outputs[name]['m_x'] = T.dot(x.T, mrk_y) / norm  # (D,O) mean input for batch

            # The mean of the current batch
            outputs[name]['yty'] = T.shape_padaxis(T.sum(y_current ** 2., axis=0), axis=0) / norm  # (1,O)
            outputs[name]['xty'] = T.dot(x.T, y_current) / norm  # D,O

        return dict_to_list(outputs)
mixture.py 文件源码 项目:nn-patterns 作者: pikinder 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_split(self, layer,
                  deterministic=True, conv_all_patches=True, **kwargs):

        # Get the patches and the outputs without the non-linearities.
        if type(layer) is L.DenseLayer:
            x, y = get_dense_xy(layer, deterministic)
        elif type(layer) is L.Conv2DLayer:
            if conv_all_patches is True:
                x, y = get_conv_xy_all(layer, deterministic)
            else:
                x, y = get_conv_xy(layer, deterministic)
        else:
            raise ValueError("Unknown layer as input")

        # Create an output dictionary
        outputs = dict()

        for name, fun in subtypes:
            outputs[name] = dict()
            mrk_y = 1.0* T.cast(fun(y), dtype=theano.config.floatX)  # (N,O)
            y_current = y*mrk_y # This has a binary mask
            cnt_y = T.shape_padaxis(T.sum(mrk_y, axis=0), axis=0)  # (1,O)
            norm = T.maximum(cnt_y, 1.)

            # Count how many datapoints are considered
            outputs[name]['cnt'] = cnt_y

            # The mean of the current batch
            outputs[name]['m_y'] = T.shape_padaxis(y_current.sum(axis=0), axis=0) / norm  # (1,O) mean output for batch
            outputs[name]['m_x'] = T.dot(x.T, mrk_y) / norm  # (D,O) mean input for batch

            # The mean of the current batch
            outputs[name]['yty'] = T.shape_padaxis(T.sum(y_current ** 2., axis=0), axis=0) / norm  # (1,O)
            outputs[name]['xty'] = T.dot(x.T, y_current) / norm  # D,O

        return dict_to_list(outputs)
maxru.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def exe_maxru(length, num_units, position, binominal):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(None, length, 1), input_var=input_var, name='input')

    time_updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    time_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                       b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    resetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                     W_cell=lasagne.init.GlorotUniform())

    updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                      W_cell=lasagne.init.GlorotUniform())

    hiden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_taru = MAXRULayer(layer_input, num_units, max_length=length,
                            P_time=lasagne.init.GlorotUniform(), nonlinearity=nonlinearities.tanh,
                            resetgate=resetgate, updategate=updategate, hidden_update=hiden_update,
                            time_updategate=time_updategate, time_update=time_update,
                            only_return_final=True, name='MAXRU', p=0.)

    # W = layer_taru.W_hid_to_hidden_update.sum()
    # U = layer_taru.W_in_to_hidden_update.sum()
    # b = layer_taru.b_hidden_update.sum()

    layer_output = DenseLayer(layer_taru, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, input_var, target_var, batch_size, length, position, binominal)
rnn.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def exe_lstm(use_embedd, length, num_units, position, binominal):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(None, length, 1), input_var=input_var, name='input')
    if use_embedd:
        layer_position = construct_position_input(batch_size, length, num_units)
        layer_input = lasagne.layers.concat([layer_input, layer_position], axis=2)

    ingate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                  W_cell=lasagne.init.Uniform(range=0.1))

    outgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                   W_cell=lasagne.init.Uniform(range=0.1))
    # according to Jozefowicz et al.(2015), init bias of forget gate to 1.
    forgetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(),
                      W_cell=lasagne.init.Uniform(range=0.1), b=lasagne.init.Constant(1.))
    # now use tanh for nonlinear function of cell, need to try pure linear cell
    cell = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_lstm = LSTMLayer(layer_input, num_units, ingate=ingate, forgetgate=forgetgate, cell=cell, outgate=outgate,
                           peepholes=False, nonlinearity=nonlinearities.tanh, only_return_final=True, name='LSTM')

    # W = layer_lstm.W_hid_to_cell.sum()
    # U = layer_lstm.W_in_to_cell.sum()
    # b = layer_lstm.b_cell.sum()

    layer_output = DenseLayer(layer_lstm, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, layer_lstm, input_var, target_var, batch_size, length, position, binominal)
rnn.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def exe_gru(use_embedd, length, num_units, position, binominal, reset_input):
    batch_size = BATCH_SIZE

    input_var = T.tensor3(name='inputs', dtype=theano.config.floatX)
    target_var = T.ivector(name='targets')

    layer_input = lasagne.layers.InputLayer(shape=(batch_size, length, 1), input_var=input_var, name='input')
    if use_embedd:
        layer_position = construct_position_input(batch_size, length, num_units)
        layer_input = lasagne.layers.concat([layer_input, layer_position], axis=2)

    resetgate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    updategate = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None)

    hiden_update = Gate(W_in=lasagne.init.GlorotUniform(), W_hid=lasagne.init.GlorotUniform(), W_cell=None,
                        b=lasagne.init.Constant(0.), nonlinearity=nonlinearities.tanh)

    layer_gru = GRULayer_ANA(layer_input, num_units, resetgate=resetgate, updategate=updategate, hidden_update=hiden_update,
                         reset_input=reset_input, only_return_final=True, name='GRU')

    # W = layer_gru.W_hid_to_hidden_update.sum()
    # U = layer_gru.W_in_to_hidden_update.sum()
    # b = layer_gru.b_hidden_update.sum()

    layer_output = DenseLayer(layer_gru, num_units=1, nonlinearity=nonlinearities.sigmoid, name='output')

    return train(layer_output, layer_gru, input_var, target_var, batch_size, length, position, binominal)
began_network.py 文件源码 项目:began 作者: davidtellez 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def dense_layer(input, n_units, name, network_weights, nonlinearity=None, bn=False):

    layer = DenseLayer(input, num_units=n_units, nonlinearity=nonlinearity, name=name,
                       W=get_W(network_weights, name), b=get_b(network_weights, name))
    if bn:
        layer = batch_norm(layer)
    return layer
Deopen_classification.py 文件源码 项目:Deopen 作者: kimmo1019 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def create_network():
    l = 1000
    pool_size = 5
    test_size1 = 13
    test_size2 = 7
    test_size3 = 5
    kernel1 = 128
    kernel2 = 128
    kernel3 = 128
    layer1 = InputLayer(shape=(None, 1, 4, l+1024))
    layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
    layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
    layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
    layer2_f = FlattenLayer(layer2_3)
    layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
    layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
    layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
    layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
    layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
    layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
    layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
    layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
    layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
    layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
    layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
    layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
    layer14_d = DenseLayer(layer14, num_units= 256)
    layer3_2 = DenseLayer(layer2_f, num_units = 128)
    layer15 = ConcatLayer([layer14_d,layer3_2])
    layer16 = DropoutLayer(layer15,p=0.5)
    layer17 = DenseLayer(layer16, num_units=256)
    network = DenseLayer(layer17, num_units= 2, nonlinearity=softmax)
    return network


#random search to initialize the weights
Deopen_regression.py 文件源码 项目:Deopen 作者: kimmo1019 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def create_network():
    l = 1000
    pool_size = 5
    test_size1 = 13
    test_size2 = 7
    test_size3 = 5
    kernel1 = 128
    kernel2 = 128
    kernel3 = 128
    layer1 = InputLayer(shape=(None, 1, 4, l+1024))
    layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
    layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
    layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
    layer2_f = FlattenLayer(layer2_3)
    layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
    layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
    layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
    layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
    layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
    layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
    layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
    layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
    layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
    layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
    layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
    layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
    layer14_d = DenseLayer(layer14, num_units= 256)
    layer3_2 = DenseLayer(layer2_f, num_units = 128)
    layer15 = ConcatLayer([layer14_d,layer3_2])
    #layer16 = DropoutLayer(layer15,p=0.5)
    layer17 = DenseLayer(layer15, num_units=256)
    network = DenseLayer(layer17, num_units= 1, nonlinearity=None)
    return network


#random search to initialize the weights
LSTM_Eac_fusion.py 文件源码 项目:EAC-Net 作者: wiibrew 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def build_tempral_model():
    net={}
    net['input']=InputLayer((None,24,2048))
    net['lstm1']=LSTMLayer(net['input'],256)
    net['fc']=DenseLayer(net['lstm1'],num_units=12,nonlinearity=sigmoid)

    return net
BP4D_EAC_dlib_train.py 文件源码 项目:EAC-Net 作者: wiibrew 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def build_model():
    net = {}
    net['input'] = InputLayer((None, 512*20, 3, 3))

    au_fc_layers=[]
    for i in range(20):
        net['roi_AU_N_'+str(i)]=SliceLayer(net['input'],indices=slice(i*512,(i+1)*512),axis=1)

        #try to adding upsampling here for more conv

        net['Roi_upsample_'+str(i)]=Upscale2DLayer(net['roi_AU_N_'+str(i)],scale_factor=2)

        net['conv_roi_'+str(i)]=ConvLayer(net['Roi_upsample_'+str(i)],512,3)

        net['au_fc_'+str(i)]=DenseLayer(net['conv_roi_'+str(i)],num_units=150)

        au_fc_layers+=[net['au_fc_'+str(i)]]

    #
    net['local_fc']=concat(au_fc_layers)
    net['local_fc2']=DenseLayer(net['local_fc'],num_units=2048)

    net['local_fc_dp']=DropoutLayer(net['local_fc2'],p=0.5)


    # net['fc_comb']=concat([net['au_fc_layer'],net['local_fc_dp']])


    # net['fc_dense']=DenseLayer(net['fc_comb'],num_units=1024)

    # net['fc_dense_dp']=DropoutLayer(net['fc_dense'],p=0.3)

    net['real_out']=DenseLayer(net['local_fc_dp'],num_units=12,nonlinearity=sigmoid)


    # net['final']=concat([net['pred_pos_layer'],net['output_layer']])

    return net
decoder.py 文件源码 项目:KGP-ASR 作者: KGPML 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def getTrainedRNN():
    ''' Read from file and set the params (To Do: Refactor 
        so as to do this only once) '''
    input_size = 39
    hidden_size = 50
    num_output_classes = 29
    learning_rate = 0.001
    output_size = num_output_classes+1
    batch_size = None
    input_seq_length = None
    gradient_clipping = 5

    l_in = InputLayer(shape=(batch_size, input_seq_length, input_size))
    n_batch, n_time_steps, n_features = l_in.input_var.shape #Unnecessary in this version. Just collecting the info so that we can reshape the output back to the original shape
    # h_1 = DenseLayer(l_in, num_units=hidden_size, nonlinearity=clipped_relu)
    l_rec_forward = RecurrentLayer(l_in, num_units=hidden_size, grad_clipping=gradient_clipping, nonlinearity=clipped_relu)
    l_rec_backward = RecurrentLayer(l_in, num_units=hidden_size, grad_clipping=gradient_clipping, nonlinearity=clipped_relu, backwards=True)
    l_rec_accumulation = ElemwiseSumLayer([l_rec_forward,l_rec_backward])
    l_rec_reshaped = ReshapeLayer(l_rec_accumulation, (-1,hidden_size))
    l_h2 = DenseLayer(l_rec_reshaped, num_units=hidden_size, nonlinearity=clipped_relu)
    l_out = DenseLayer(l_h2, num_units=output_size, nonlinearity=lasagne.nonlinearities.linear)
    l_out_reshaped = ReshapeLayer(l_out, (n_batch, n_time_steps, output_size))#Reshaping back
    l_out_softmax = NonlinearityLayer(l_out, nonlinearity=lasagne.nonlinearities.softmax)
    l_out_softmax_reshaped = ReshapeLayer(l_out_softmax, (n_batch, n_time_steps, output_size))


    with np.load('CTC_model.npz') as f:
        param_values = [f['arr_%d' % i] for i in range(len(f.files))]
    lasagne.layers.set_all_param_values(l_out_softmax_reshaped, param_values, trainable = True)
    output = lasagne.layers.get_output( l_out_softmax_reshaped )
    return l_in, output
decoder.py 文件源码 项目:KGP-ASR 作者: KGPML 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def getTrainedCLM():
    ''' Read CLM from file '''
    #Some parameters for the CLM
    INPUT_SIZE = 29

    #Hidden layer hyper-parameters
    N_HIDDEN = 100
    HIDDEN_NONLINEARITY = 'rectify'

    #Gradient clipping
    GRAD_CLIP = 100
    l_in = lasagne.layers.InputLayer(shape = (None, None, INPUT_SIZE)) #One-hot represenntation of character indices
    l_mask = lasagne.layers.InputLayer(shape = (None, None))

    l_recurrent = lasagne.layers.RecurrentLayer(incoming = l_in, num_units=N_HIDDEN, mask_input = l_mask, learn_init=True, grad_clipping=GRAD_CLIP)
    Recurrent_output=lasagne.layers.get_output(l_recurrent)

    n_batch, n_time_steps, n_features = l_in.input_var.shape

    l_reshape = lasagne.layers.ReshapeLayer(l_recurrent, (-1, N_HIDDEN))
    Reshape_output = lasagne.layers.get_output(l_reshape)

    l_h1 = lasagne.layers.DenseLayer(l_reshape, num_units=N_HIDDEN)
    l_h2 = lasagne.layers.DenseLayer(l_h1, num_units=N_HIDDEN)
    l_dense = lasagne.layers.DenseLayer(l_h2, num_units=INPUT_SIZE, nonlinearity = lasagne.nonlinearities.softmax)
    with np.load('CLM_model.npz') as f:
        param_values = [f['arr_%d' % i] for i in range(len(f.files))]
    lasagne.layers.set_all_param_values(l_dense, param_values,trainable = True)
    output = lasagne.layers.get_output( l_dense )
    return l_in,l_mask,output


#def getCLMOneHot( sequence ):


问题


面经


文章

微信
公众号

扫码关注公众号