python类InputLayer()的实例源码

demo.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
dbn.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
evaluate_delta_features.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def compile_encoder(encoderpath=None):
    # create input
    if encoderpath:
        l_encoder = pickle.load(open(encoderpath, 'rb'))
        input_var = las.layers.get_all_layers(l_encoder)[0].input_var
        visualize_layer(las.layers.get_all_layers(l_encoder)[2], 40, 30)
    else:
        input_var = T.matrix('input', dtype='float32')
        weights, biases = autoencoder.load_dbn()
        en_activations = [sigmoid, sigmoid, sigmoid, linear]
        en_layersizes = [2000, 1000, 500, 50]
        l_input = InputLayer((None, 1200), input_var, name='input')
        l_encoder = autoencoder.create_model(l_input, weights[:4], biases[:4], en_activations, en_layersizes)
    print_network(l_encoder)

    encoded_features = las.layers.get_output(l_encoder)
    encode_fn = theano.function([input_var], encoded_features, allow_input_downcast=True)
    return encode_fn
evaluate_delta_features.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def extract_encoder(network, inputshape, start, end):
    layers = las.layers.get_all_layers(network)
    weights = []
    biases = []
    activations = []
    layersizes = []

    for l in layers[start:end]:
        weights.append(l.W)
        biases.append(l.b)
        activations.append(l.nonlinearity)
        layersizes.append(l.num_units)

    input = T.matrix('input', dtype='float32')
    encoder = InputLayer(inputshape, input, name='input')
    encoder = autoencoder.create_pretrained_encoder(encoder, weights, biases, activations, layersizes)
    return encoder
sde_autoencoder.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def build_encoder_layers(input_size, encode_size, sigma=0.5):
    """
    builds an autoencoder with gaussian noise layer
    :param input_size: input size
    :param encode_size: encoded size
    :param sigma: gaussian noise standard deviation
    :return: Weights of encoder layer, denoising autoencoder layer
    """
    W = theano.shared(GlorotUniform().sample(shape=(input_size, encode_size)))

    layers = [
        (InputLayer, {'shape': (None, input_size)}),
        (GaussianNoiseLayer, {'name': 'corrupt', 'sigma': sigma}),
        (DenseLayer, {'name': 'encoder', 'num_units': encode_size, 'nonlinearity': sigmoid, 'W': W}),
        (DenseLayer, {'name': 'decoder', 'num_units': input_size, 'nonlinearity': linear, 'W': W.T}),
    ]
    return W, layers
unimodal_nodelta_with_val.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=adadelta,
        update_learning_rate=0.01,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
trimodal_with_val.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
__init__.py 文件源码 项目:aenet 作者: znaoya 项目源码 文件源码 阅读 54 收藏 0 点赞 0 评论 0
def build_model(self):
        '''
        Build Acoustic Event Net model
        :return:
        '''

        # A architecture 41 classes
        nonlin = lasagne.nonlinearities.rectify
        net = {}
        net['input'] = InputLayer((None, feat_shape[0], feat_shape[1], feat_shape[2]))  # channel, time. frequency
        # ----------- 1st layer group ---------------
        net['conv1a'] = ConvLayer(net['input'], num_filters=64, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['conv1b'] = ConvLayer(net['conv1a'], num_filters=64, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['pool1'] = MaxPool2DLayer(net['conv1b'], pool_size=(1, 2))  # (time, freq)
        # ----------- 2nd layer group ---------------
        net['conv2a'] = ConvLayer(net['pool1'], num_filters=128, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['conv2b'] = ConvLayer(net['conv2a'], num_filters=128, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['pool2'] = MaxPool2DLayer(net['conv2b'], pool_size=(2, 2))  # (time, freq)
        # ----------- fully connected layer group ---------------
        net['fc5'] = DenseLayer(net['pool2'], num_units=1024, nonlinearity=nonlin)
        net['fc6'] = DenseLayer(net['fc5'], num_units=1024, nonlinearity=nonlin)
        net['prob'] = DenseLayer(net['fc6'], num_units=41, nonlinearity=lasagne.nonlinearities.softmax)

        return net
MNIST.py 文件源码 项目:RL4Data 作者: fyabc 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def build_cnn(self):
        # Building the network
        layer_in = InputLayer(shape=(None, 784), input_var=self.input_var)

        # Hidden layer
        layer = DenseLayer(
            layer_in,
            num_units=self.hidden_size,
            W=lasagne.init.Uniform(
                range=(-np.sqrt(6. / (784 + self.hidden_size)),
                       np.sqrt(6. / (784 + self.hidden_size)))),
            nonlinearity=tanh,
        )

        # LR layer
        layer = DenseLayer(
            layer,
            num_units=self.output_size,
            W=lasagne.init.Constant(0.),
            nonlinearity=softmax,
        )

        return layer
__init__.py 文件源码 项目:rnn_reader 作者: adbrebs 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def init_virtual(self):

        self.seq_con = T.matrix('seq_cont', 'int32')
        self.seq_con_mask = T.matrix('seq_cont_mask', floatX)
        self.seq_que = T.matrix('seq_quest', 'int32')
        self.seq_que_mask = T.matrix('seq_quest_mask', floatX)

        self.vars = [
            self.seq_con,
            self.seq_con_mask,
            self.seq_que,
            self.seq_que_mask] + self.vars

        self.in_con = InputLayer((None, None), self.seq_con)
        self.in_con_mask = InputLayer((None, None), self.seq_con_mask)
        self.in_que = InputLayer((None, None), self.seq_que)
        self.in_que_mask = InputLayer((None, None), self.seq_que_mask)
dssm.py 文件源码 项目:recom-system 作者: tizot 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def build_multi_dssm(input_var=None, num_samples=None, num_entries=6, num_ngrams=42**3, num_hid1=300, num_hid2=300, num_out=128):
    """Builds a DSSM structure in a Lasagne/Theano way.

    The built DSSM is the neural network that computes the projection of only one paper.
    The input ``input_var`` should have two dimensions: (``num_samples * num_entries``, ``num_ngrams``).
    The output is then computed in a batch way: one paper at a time, but all papers from the same sample in the dataset are grouped
    (cited papers, citing papers and ``num_entries - 2`` irrelevant papers).

    Args:
        input_var (:class:`theano.tensor.TensorType` or None): symbolic input variable of the DSSM
        num_samples (int): the number of samples in the batch input dataset (number of rows)
        num_entries (int): the number of compared papers in the DSSM structure
        num_ngrams (int): the size of the vocabulary
        num_hid1 (int): the number of units in the first hidden layer
        num_hid2 (int): the number of units in the second hidden layer
        num_out (int): the number of units in the output layer

    Returns:
        :class:`lasagne.layers.Layer`: the output layer of the DSSM
    """

    assert (num_entries > 2)

    # Initialise input layer
    if num_samples is None:
        num_rows = None
    else:
        num_rows = num_samples * num_entries

    l_in = layers.InputLayer(shape=(num_rows, num_ngrams), input_var=input_var)

    # Initialise the hidden and output layers or the DSSM
    l_hid1 = layers.DenseLayer(l_in, num_units=num_hid1, nonlinearity=nonlinearities.tanh, W=init.GlorotUniform())
    l_hid2 = layers.DenseLayer(l_hid1, num_units=num_hid2, nonlinearity=nonlinearities.tanh, W=init.GlorotUniform())
    l_out = layers.DenseLayer(l_hid2, num_units=num_out, nonlinearity=nonlinearities.tanh, W=init.GlorotUniform())

    l_out = layers.ExpressionLayer(l_out, lambda X: X / X.norm(2), output_shape='auto')

    return l_out
model_helpers.py 文件源码 项目:iterative_inference_segm 作者: adri-romsor 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def concatenate(net, in_layer, concat_h, concat_vars, pos, nb_concat_features):
    """
    Auxiliary function that checks whether we should concatenate the output of
    a layer `in_layer` of a network `net` to some a tensor in `concat_vars`

    Parameters
    ----------
    net: dictionary containing layers of a network
    in_layer: name of a layer in net
    concat_h: list of layers to concatenate
    concat_vars: list of variables (tensors) to concatenate
    pos: position in lists `concat_h` and `concat_vars` we want to check
    nb_concat_features: number of features in the layer we want to concatenate
    """
    if pos < len(concat_h) and concat_h[pos] == 'input':
        concat_h[pos] = in_layer

    # if this is the layer we want to concatenate, create an InputLayer with the
    # tensor we want to concatenate and a ConcatLayer that does the job afterwards
    if in_layer in concat_h:
        net[in_layer + '_h'] = InputLayer((None, nb_concat_features, None, None), concat_vars[pos])
        net[in_layer + '_concat'] = ConcatLayer((net[in_layer + '_h'],
                                            net[in_layer]), axis=1, cropping=None)
        pos += 1
        out = in_layer + '_concat'

        laySize = net[out].output_shape
        n_cl = laySize[1]
        print('Number of feature maps (concat):', n_cl)
    else:
        out = in_layer

    if concat_h and pos <= len(concat_h) and concat_h[pos-1] == 'noisy_input':
        concat_h[pos-1] = 'input'

    return pos, out
model_helpers.py 文件源码 项目:iterative_inference_segm 作者: adri-romsor 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def concatenate_end2end(net, in_layer, concat_h, layer_h, pos, nb_concat_features):
    """
    Auxiliary function that checks whether we should concatenate the output of
    a layer `in_layer` of a network `net` to some a tensor in `concat_vars`

    Parameters
    ----------
    net: dictionary containing layers of a network
    in_layer: name of a layer in net
    concat_h: list of layers to concatenate
    concat_vars: list of variables (tensors) to concatenate
    pos: position in lists `concat_h` and `concat_vars` we want to check
    nb_concat_features: number of features in the layer we want to concatenate
    """
    if pos < len(concat_h) and concat_h[pos] == 'input':
        concat_h[pos] = in_layer

    # if this is the layer we want to concatenate, create an InputLayer with the
    # tensor we want to concatenate and a ConcatLayer that does the job afterwards
    if in_layer in concat_h:
        net[in_layer + '_h'] = layer_h[pos]
        net[in_layer + '_concat'] = ConcatLayer((net[in_layer + '_h'],
                                            net[in_layer]), axis=1, cropping=None)
        pos += 1
        out = in_layer + '_concat'

        laySize = net[out].output_shape
        n_cl = laySize[1]
        print('Number of feature maps (concat):', n_cl)
    else:
        out = in_layer

    if concat_h and pos <= len(concat_h) and concat_h[pos-1] == 'noisy_input':
        concat_h[pos-1] = 'input'

    return pos, out
convolutional_neural_network.py 文件源码 项目:kaggle-breast-cancer-prediction 作者: sirCamp 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def CNN(n_epochs):
    net1 = NeuralNet(
        layers=[
            ('input', layers.InputLayer),
            ('conv1', layers.Conv2DLayer),  # Convolutional layer.  Params defined below
            ('pool1', layers.MaxPool2DLayer),  # Like downsampling, for execution speed
            ('conv2', layers.Conv2DLayer),
            ('hidden3', layers.DenseLayer),
            ('output', layers.DenseLayer),
        ],

        input_shape=(None, 1, 6, 5),
        conv1_num_filters=8,
        conv1_filter_size=(3, 3),
        conv1_nonlinearity=lasagne.nonlinearities.rectify,

        pool1_pool_size=(2, 2),

        conv2_num_filters=12,
        conv2_filter_size=(1, 1),
        conv2_nonlinearity=lasagne.nonlinearities.rectify,

        hidden3_num_units=1000,
        output_num_units=2,
        output_nonlinearity=lasagne.nonlinearities.softmax,

        update_learning_rate=0.0001,
        update_momentum=0.9,

        max_epochs=n_epochs,
        verbose=0,
    )
    return net1
base.py 文件源码 项目:nn-patterns 作者: pikinder 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def _invert_InputLayer(self, layer, feeder):
        assert isinstance(layer, L.InputLayer)
        return feeder
base.py 文件源码 项目:nn-patterns 作者: pikinder 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def _invert_layer(self, layer, feeder):
        layer_type = type(layer)

        if L.get_output_shape(feeder) != L.get_output_shape(layer):
            feeder = L.ReshapeLayer(feeder, (-1,)+L.get_output_shape(layer)[1:])
        if layer_type is L.InputLayer:
            return self._invert_InputLayer(layer, feeder)
        elif layer_type is L.FlattenLayer:
            return self._invert_FlattenLayer(layer, feeder)
        elif layer_type is L.DenseLayer:
            return self._invert_DenseLayer(layer, feeder)
        elif layer_type is L.Conv2DLayer:
            return self._invert_Conv2DLayer(layer, feeder)
        elif layer_type is L.DropoutLayer:
            return self._invert_DropoutLayer(layer, feeder)
        elif layer_type in [L.MaxPool2DLayer, L.MaxPool1DLayer]:
            return self._invert_MaxPoolingLayer(layer, feeder)
        elif layer_type is L.PadLayer:
            return self._invert_PadLayer(layer, feeder)
        elif layer_type is L.SliceLayer:
            return self._invert_SliceLayer(layer, feeder)
        elif layer_type is L.LocalResponseNormalization2DLayer:
            return self._invert_LocalResponseNormalisation2DLayer(layer, feeder)
        elif layer_type is L.GlobalPoolLayer:
            return self._invert_GlobalPoolLayer(layer, feeder)
        else:
            return self._invert_UnknownLayer(layer, feeder)
base.py 文件源码 项目:nn-patterns 作者: pikinder 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def _construct_layer_maps(self):
        layers = L.get_all_layers(self.output_layer)
        # Store inverse layers to enable merging.
        self.inverse_map = {l: None for l in layers}
        # Store the layers a specific layer feeds.
        self.output_map = {l: [] for l in layers}

        for layer in  layers:
            if type(layer) is not L.InputLayer:
                if isinstance(layer, L.MergeLayer):
                    for feeder in layer.input_layers:
                        self.output_map[feeder].append(layer)
                else:
                    self.output_map[layer.input_layer].append(layer)
Deopen_classification.py 文件源码 项目:Deopen 作者: kimmo1019 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def create_network():
    l = 1000
    pool_size = 5
    test_size1 = 13
    test_size2 = 7
    test_size3 = 5
    kernel1 = 128
    kernel2 = 128
    kernel3 = 128
    layer1 = InputLayer(shape=(None, 1, 4, l+1024))
    layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
    layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
    layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
    layer2_f = FlattenLayer(layer2_3)
    layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
    layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
    layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
    layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
    layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
    layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
    layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
    layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
    layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
    layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
    layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
    layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
    layer14_d = DenseLayer(layer14, num_units= 256)
    layer3_2 = DenseLayer(layer2_f, num_units = 128)
    layer15 = ConcatLayer([layer14_d,layer3_2])
    layer16 = DropoutLayer(layer15,p=0.5)
    layer17 = DenseLayer(layer16, num_units=256)
    network = DenseLayer(layer17, num_units= 2, nonlinearity=softmax)
    return network


#random search to initialize the weights
Deopen_regression.py 文件源码 项目:Deopen 作者: kimmo1019 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_network():
    l = 1000
    pool_size = 5
    test_size1 = 13
    test_size2 = 7
    test_size3 = 5
    kernel1 = 128
    kernel2 = 128
    kernel3 = 128
    layer1 = InputLayer(shape=(None, 1, 4, l+1024))
    layer2_1 = SliceLayer(layer1, indices=slice(0, l), axis = -1)
    layer2_2 = SliceLayer(layer1, indices=slice(l, None), axis = -1)
    layer2_3 = SliceLayer(layer2_2, indices = slice(0,4), axis = -2)
    layer2_f = FlattenLayer(layer2_3)
    layer3 = Conv2DLayer(layer2_1,num_filters = kernel1, filter_size = (4,test_size1))
    layer4 = Conv2DLayer(layer3,num_filters = kernel1, filter_size = (1,test_size1))
    layer5 = Conv2DLayer(layer4,num_filters = kernel1, filter_size = (1,test_size1))
    layer6 = MaxPool2DLayer(layer5, pool_size = (1,pool_size))
    layer7 = Conv2DLayer(layer6,num_filters = kernel2, filter_size = (1,test_size2))
    layer8 = Conv2DLayer(layer7,num_filters = kernel2, filter_size = (1,test_size2))
    layer9 = Conv2DLayer(layer8,num_filters = kernel2, filter_size = (1,test_size2))
    layer10 = MaxPool2DLayer(layer9, pool_size = (1,pool_size))
    layer11 = Conv2DLayer(layer10,num_filters = kernel3, filter_size = (1,test_size3))
    layer12 = Conv2DLayer(layer11,num_filters = kernel3, filter_size = (1,test_size3))
    layer13 = Conv2DLayer(layer12,num_filters = kernel3, filter_size = (1,test_size3))
    layer14 = MaxPool2DLayer(layer13, pool_size = (1,pool_size))
    layer14_d = DenseLayer(layer14, num_units= 256)
    layer3_2 = DenseLayer(layer2_f, num_units = 128)
    layer15 = ConcatLayer([layer14_d,layer3_2])
    #layer16 = DropoutLayer(layer15,p=0.5)
    layer17 = DenseLayer(layer15, num_units=256)
    network = DenseLayer(layer17, num_units= 1, nonlinearity=None)
    return network


#random search to initialize the weights
neuralnet.py 文件源码 项目:pl-cnn 作者: oval-group 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def addInputLayer(self, **kwargs):

        self.input_layer = InputLayer(name="input", **kwargs)
        self.input_layer.inp_ndim = len(kwargs["shape"])


问题


面经


文章

微信
公众号

扫码关注公众号