python类InputLayer()的实例源码

test_bahdanauAttentionLayer.py 文件源码 项目:e2e-ie-release 作者: rasmusbergpalm 项目源码 文件源码 阅读 36 收藏 0 点赞 0 评论 0
def test_get_output_for(self):
        keys_var = T.ftensor3()
        values_var = T.ftensor3()
        mask_var = T.fmatrix()
        queries_var = T.ftensor3()

        keys_layer = L.InputLayer((None, None, 3), input_var=keys_var)
        values_layer = L.InputLayer((None, None, 5), input_var=values_var)
        mask_layer = L.InputLayer((None, None), input_var=mask_var)
        queries_layer = L.InputLayer((None, None, 7), input_var=queries_var)

        attention_layer = BahdanauKeyValueAttentionLayer([keys_layer, values_layer, mask_layer, queries_layer], 9)

        attention_outputs = L.get_output(attention_layer)

        fn = theano.function([keys_var, values_var, mask_var, queries_var], attention_outputs, on_unused_input='warn')

        keys = np.random.rand(32, 13, 3).astype(np.float32)
        values = np.random.rand(32, 13, 5).astype(np.float32)
        mask = np.random.rand(32, 13).astype(np.float32)
        queries = np.random.rand(32, 17, 7).astype(np.float32)

        _att = fn(keys, values, mask, queries)

        self.assertEqual((32, 17, 5), _att.shape)
conv.py 文件源码 项目:NeuroNLP 作者: XuezheMax 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, incoming, num_filters, filter_size, stride=1,
                 pad=0, untie_biases=False,
                 W=init.GlorotUniform(), b=init.Constant(0.),
                 nonlinearity=nonlinearities.rectify, flip_filters=True,
                 convolution=conv.conv1d_mc0, **kwargs):
        if isinstance(incoming, tuple):
            input_shape = incoming
        else:
            input_shape = incoming.output_shape

        # Retrieve the supplied name, if it exists; otherwise use ''
        if 'name' in kwargs:
            basename = kwargs['name'] + '.'
            # Create a separate version of kwargs for the contained layers
            # which does not include 'name'
            layer_kwargs = dict((key, arg) for key, arg in kwargs.items() if key != 'name')
        else:
            basename = ''
            layer_kwargs = kwargs
        self.conv1d = Conv1DLayer(InputLayer((None,) + input_shape[2:]), num_filters, filter_size, stride, pad,
                                  untie_biases, W, b, nonlinearity, flip_filters, convolution, name=basename + "conv1d",
                                  **layer_kwargs)
        self.W = self.conv1d.W
        self.b = self.conv1d.b
        super(ConvTimeStep1DLayer, self).__init__(incoming, **kwargs)
enhance.py 文件源码 项目:supic 作者: Hirico 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self):
        self.network = collections.OrderedDict()
        self.network['img'] = InputLayer((None, 3, None, None))
        self.network['seed'] = InputLayer((None, 3, None, None))

        config, params = self.load_model()
        self.setup_generator(self.last_layer(), config)

        if args.train:
            concatenated = lasagne.layers.ConcatLayer([self.network['img'], self.network['out']], axis=0)
            self.setup_perceptual(concatenated)
            self.load_perceptual()
            self.setup_discriminator()
        self.load_generator(params)
        self.compile()

    #------------------------------------------------------------------------------------------------------------------
    # Network Configuration
    #------------------------------------------------------------------------------------------------------------------
lsgan.py 文件源码 项目:Theano-MPI 作者: uoguelph-mlrg 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def build_critic(input_var=None):
    from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
                                DenseLayer)
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import LeakyRectify
    lrelu = LeakyRectify(0.2)
    # input: (None, 1, 28, 28)
    layer = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)
    # two convolutions
    layer = batch_norm(Conv2DLayer(layer, 64, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    # fully-connected layer
    layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
    # output layer (linear)
    layer = DenseLayer(layer, 1, nonlinearity=None)
    print ("critic output:", layer.output_shape)
    return layer
lsgan_cifar10.py 文件源码 项目:Theano-MPI 作者: uoguelph-mlrg 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def build_critic(input_var=None, verbose=False):
    from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
                                DenseLayer)
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import LeakyRectify, sigmoid
    lrelu = LeakyRectify(0.2)
    # input: (None, 1, 28, 28)
    layer = InputLayer(shape=(None, 3, 32, 32), input_var=input_var)
    # two convolutions
    layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 256, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 512, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    # # fully-connected layer
    # layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
    # output layer (linear)
    layer = DenseLayer(layer, 1, nonlinearity=None)
    if verbose: print ("critic output:", layer.output_shape)
    return layer
wgan.py 文件源码 项目:Theano-MPI 作者: uoguelph-mlrg 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def build_critic(input_var=None):
    from lasagne.layers import (InputLayer, Conv2DLayer, ReshapeLayer,
                                DenseLayer)
    try:
        from lasagne.layers.dnn import batch_norm_dnn as batch_norm
    except ImportError:
        from lasagne.layers import batch_norm
    from lasagne.nonlinearities import LeakyRectify
    lrelu = LeakyRectify(0.2)
    # input: (None, 1, 28, 28)
    layer = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)
    # two convolutions
    layer = batch_norm(Conv2DLayer(layer, 64, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    layer = batch_norm(Conv2DLayer(layer, 128, 5, stride=2, pad='same',
                                   nonlinearity=lrelu))
    # fully-connected layer
    layer = batch_norm(DenseLayer(layer, 1024, nonlinearity=lrelu))
    # output layer (linear and without bias)
    layer = DenseLayer(layer, 1, nonlinearity=None, b=None)
    print ("critic output:", layer.output_shape)
    return layer
train_fcae.py 文件源码 项目:experiments 作者: tencia 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def build_fcae(input_var, channels=1):
    ret = {}
    ret['input'] = layer = InputLayer(shape=(None, channels, None, None), input_var=input_var)
    ret['conv1'] = layer = bn(Conv2DLayer(layer, num_filters=128, filter_size=5, pad='full'))
    ret['pool1'] = layer =  MaxPool2DLayer(layer, pool_size=2)
    ret['conv2'] = layer = bn(Conv2DLayer(layer, num_filters=256, filter_size=3, pad='full'))
    ret['pool2'] = layer = MaxPool2DLayer(layer, pool_size=2)
    ret['conv3'] = layer = bn(Conv2DLayer(layer, num_filters=32, filter_size=3, pad='full'))
    ret['enc'] = layer = GlobalPoolLayer(layer)
    ret['ph1'] = layer = NonlinearityLayer(layer, nonlinearity=None)
    ret['ph2'] = layer = NonlinearityLayer(layer, nonlinearity=None)
    ret['unenc'] = layer = bn(InverseLayer(layer, ret['enc']))
    ret['deconv3'] = layer = bn(Conv2DLayer(layer, num_filters=256, filter_size=3))
    ret['depool2'] = layer = InverseLayer(layer, ret['pool2'])
    ret['deconv2'] = layer = bn(Conv2DLayer(layer, num_filters=128, filter_size=3))
    ret['depool1'] = layer = InverseLayer(layer, ret['pool1'])
    ret['output'] = layer = Conv2DLayer(layer, num_filters=1, filter_size=5,
                                     nonlinearity=nn.nonlinearities.sigmoid)
    return ret
enhance.py 文件源码 项目:DeepRes 作者: Aneeshers 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self):
        self.network = collections.OrderedDict()
        self.network['img'] = InputLayer((None, 3, None, None))
        self.network['seed'] = InputLayer((None, 3, None, None))

        config, params = self.load_model()
        self.setup_generator(self.last_layer(), config)

        if args.train:
            concatenated = lasagne.layers.ConcatLayer([self.network['img'], self.network['out']], axis=0)
            self.setup_perceptual(concatenated)
            self.load_perceptual()
            self.setup_discriminator()
        self.load_generator(params)
        self.compile()

    #------------------------------------------------------------------------------------------------------------------
    #------------------------------------------------------------------------------------------------------------------
feedforward_lasagne_mnist.py 文件源码 项目:deep_learning 作者: Vict0rSch 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def build_mlp(input_var=None):
    l_in = InputLayer(shape=(None, 1, 28, 28), input_var=input_var)

    l_hid1 = DenseLayer(
            l_in, num_units=500,
            nonlinearity=rectify,
            W=lasagne.init.GlorotUniform())
    l_hid1_drop = DropoutLayer(l_hid1, p=0.4)

    l_hid2 = DenseLayer(
            l_hid1_drop, num_units=300,
            nonlinearity=rectify)
    l_hid2_drop = DropoutLayer(l_hid2, p=0.4)

    l_out = DenseLayer(
            l_hid2_drop, num_units=10,
            nonlinearity=softmax)

    return l_out


# generator giving the batches
recurrent_lasagne_power.py 文件源码 项目:deep_learning 作者: Vict0rSch 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def build_model(input_var=None):

    layers = [1, 5, 10, 1]

    l_in = InputLayer((None, None, layers[0]),
                      input_var=input_var)

    l_lstm1 = LSTMLayer(l_in, layers[1])
    l_lstm1_dropout = DropoutLayer(l_lstm1, p=0.2)

    l_lstm2 = LSTMLayer(l_lstm1_dropout, layers[2])
    l_lstm2_dropout = DropoutLayer(l_lstm2, p=0.2)

    # The objective of this task depends only on the final value produced by
    # the network.  So, we'll use SliceLayers to extract the LSTM layer's
    # output after processing the entire input sequence.  For the forward
    # layer, this corresponds to the last value of the second (sequence length)
    # dimension.
    l_slice = SliceLayer(l_lstm2_dropout, -1, 1)

    l_out = DenseLayer(l_slice, 1, nonlinearity=lasagne.nonlinearities.linear)

    return l_out
recurrent_lasagne_power.py 文件源码 项目:deep_learning 作者: Vict0rSch 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def build_model(input_var=None):

    layers = [1, 5, 10, 1]

    l_in = InputLayer((None, None, layers[0]),
                      input_var=input_var)

    l_lstm1 = LSTMLayer(l_in, layers[1])
    l_lstm1_dropout = DropoutLayer(l_lstm1, p=0.2)

    l_lstm2 = LSTMLayer(l_lstm1_dropout, layers[2])
    l_lstm2_dropout = DropoutLayer(l_lstm2, p=0.2)

    # The objective of this task depends only on the final value produced by
    # the network.  So, we'll use SliceLayers to extract the LSTM layer's
    # output after processing the entire input sequence.  For the forward
    # layer, this corresponds to the last value of the second (sequence length)
    # dimension.
    l_slice = SliceLayer(l_lstm2_dropout, -1, 1)

    l_out = DenseLayer(l_slice, 1, nonlinearity=lasagne.nonlinearities.linear)

    return l_out
cnn_cascade_lasagne.py 文件源码 项目:Cascade-CNN-Face-Detection 作者: gogolgrind 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def __build_48_net__(self):
        network = layers.InputLayer((None, 3, 48, 48), input_var=self.__input_var__)

        network = layers.Conv2DLayer(network,num_filters=64,filter_size=(5,5),stride=1,nonlinearity=relu)
        network = layers.MaxPool2DLayer(network, pool_size = (3,3),stride = 2)        
        network = layers.batch_norm(network)

        network = layers.Conv2DLayer(network,num_filters=64,filter_size=(5,5),stride=1,nonlinearity=relu)
        network = layers.batch_norm(network)
        network = layers.MaxPool2DLayer(network, pool_size = (3,3),stride = 2)

        network = layers.Conv2DLayer(network,num_filters=64,filter_size=(3,3),stride=1,nonlinearity=relu)
        network = layers.batch_norm(network)
        network = layers.MaxPool2DLayer(network, pool_size = (3,3),stride = 2)

        network = layers.DenseLayer(network,num_units = 256,nonlinearity = relu)
        network = layers.DenseLayer(network,num_units = 2, nonlinearity = softmax)
        return network
test_recurrent.py 文件源码 项目:seq2seq-lasagne 作者: erfannoury 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_lnlstm_nparams_hid_init_layer():
    # test that you can see layers through hid_init
    l_inp = InputLayer((2, 2, 3))
    l_inp_h = InputLayer((2, 5))
    l_inp_h_de = DenseLayer(l_inp_h, 7)
    l_inp_cell = InputLayer((2, 5))
    l_inp_cell_de = DenseLayer(l_inp_cell, 7)
    l_lstm = LNLSTMLayer(l_inp, 7, hid_init=l_inp_h_de, cell_init=l_inp_cell_de)

    # directly check the layers can be seen through hid_init
    layers_to_find = [l_inp, l_inp_h, l_inp_h_de, l_inp_cell, l_inp_cell_de,
                      l_lstm]
    assert lasagne.layers.get_all_layers(l_lstm) == layers_to_find

    # 7*n_gates + 3*n_peepholes + 4
    # the 7 is because we have  hid_to_gate, in_to_gate and bias and 
    # layer normalization for each gate
    # 4 is for the W and b parameters in the two DenseLayer layers
    print lasagne.layers.get_all_params(l_lstm, trainable=True)
    assert len(lasagne.layers.get_all_params(l_lstm, trainable=True)) == 37

    # LSTM bias params(4) + LN betas(2*#gate) (+ Dense bias params(1) * 2
    assert len(lasagne.layers.get_all_params(l_lstm, regularizable=False)) == 15
test_recurrent.py 文件源码 项目:seq2seq-lasagne 作者: erfannoury 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_lnlstm_bck():
    num_batch, seq_len, n_features1 = 2, 3, 4
    num_units = 2
    x = T.tensor3()
    in_shp = (num_batch, seq_len, n_features1)
    l_inp = InputLayer(in_shp)

    x_in = np.ones(in_shp).astype('float32')

    # need to set random seed.
    lasagne.random.get_rng().seed(1234)
    l_lstm_fwd = LNLSTMLayer(l_inp, num_units=num_units, backwards=False)
    lasagne.random.get_rng().seed(1234)
    l_lstm_bck = LNLSTMLayer(l_inp, num_units=num_units, backwards=True)
    output_fwd = helper.get_output(l_lstm_fwd, x)
    output_bck = helper.get_output(l_lstm_bck, x)

    output_fwd_val = output_fwd.eval({x: x_in})
    output_bck_val = output_bck.eval({x: x_in})

    # test that the backwards model reverses its final input
    np.testing.assert_almost_equal(output_fwd_val, output_bck_val[:, ::-1])
test_recurrent.py 文件源码 项目:seq2seq-lasagne 作者: erfannoury 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_lnlstm_unroll_scan_bck():
    num_batch, seq_len, n_features1 = 2, 3, 4
    num_units = 2
    x = T.tensor3()
    in_shp = (num_batch, seq_len, n_features1)
    l_inp = InputLayer(in_shp)

    x_in = np.random.random(in_shp).astype('float32')

    # need to set random seed.
    lasagne.random.get_rng().seed(1234)
    l_lstm_scan = LNLSTMLayer(l_inp, num_units=num_units, backwards=True,
                            unroll_scan=False)
    lasagne.random.get_rng().seed(1234)
    l_lstm_unrolled = LNLSTMLayer(l_inp, num_units=num_units, backwards=True,
                                unroll_scan=True)
    output_scan = helper.get_output(l_lstm_scan, x)
    output_scan_unrolled = helper.get_output(l_lstm_unrolled, x)

    output_scan_val = output_scan.eval({x: x_in})
    output_unrolled_val = output_scan_unrolled.eval({x: x_in})

    np.testing.assert_almost_equal(output_scan_val, output_unrolled_val)
test_recurrent.py 文件源码 项目:seq2seq-lasagne 作者: erfannoury 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_lnlstm_return_final():
    num_batch, seq_len, n_features = 2, 3, 4
    num_units = 2
    in_shp = (num_batch, seq_len, n_features)
    x_in = np.random.random(in_shp).astype('float32')

    l_inp = InputLayer(in_shp)
    lasagne.random.get_rng().seed(1234)
    l_rec_final = LNLSTMLayer(l_inp, num_units, only_return_final=True)
    lasagne.random.get_rng().seed(1234)
    l_rec_all = LNLSTMLayer(l_inp, num_units, only_return_final=False)

    output_final = helper.get_output(l_rec_final).eval({l_inp.input_var: x_in})
    output_all = helper.get_output(l_rec_all).eval({l_inp.input_var: x_in})

    assert output_final.shape == (output_all.shape[0], output_all.shape[2])
    assert output_final.shape == lasagne.layers.get_output_shape(l_rec_final)
    assert np.allclose(output_final, output_all[:, -1])
test_recurrent.py 文件源码 项目:seq2seq-lasagne 作者: erfannoury 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def test_lstm_nparams_hid_init_layer():
    # test that you can see layers through hid_init
    l_inp = InputLayer((2, 2, 3))
    l_inp_h = InputLayer((2, 5))
    l_inp_h_de = DenseLayer(l_inp_h, 7)
    l_inp_cell = InputLayer((2, 5))
    l_inp_cell_de = DenseLayer(l_inp_cell, 7)
    l_lstm = LSTMLayer(l_inp, 7, hid_init=l_inp_h_de, cell_init=l_inp_cell_de)

    # directly check the layers can be seen through hid_init
    layers_to_find = [l_inp, l_inp_h, l_inp_h_de, l_inp_cell, l_inp_cell_de,
                      l_lstm]
    assert lasagne.layers.get_all_layers(l_lstm) == layers_to_find

    # 3*n_gates + 4
    # the 3 is because we have  hid_to_gate, in_to_gate and bias for each gate
    # 4 is for the W and b parameters in the two DenseLayer layers
    assert len(lasagne.layers.get_all_params(l_lstm, trainable=True)) == 19

    # GRU bias params(3) + Dense bias params(1) * 2
    assert len(lasagne.layers.get_all_params(l_lstm, regularizable=False)) == 6
test_recurrent.py 文件源码 项目:seq2seq-lasagne 作者: erfannoury 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_lstm_bck():
    num_batch, seq_len, n_features1 = 2, 3, 4
    num_units = 2
    x = T.tensor3()
    in_shp = (num_batch, seq_len, n_features1)
    l_inp = InputLayer(in_shp)

    x_in = np.ones(in_shp).astype('float32')

    # need to set random seed.
    lasagne.random.get_rng().seed(1234)
    l_lstm_fwd = LSTMLayer(l_inp, num_units=num_units, backwards=False)
    lasagne.random.get_rng().seed(1234)
    l_lstm_bck = LSTMLayer(l_inp, num_units=num_units, backwards=True)
    output_fwd = helper.get_output(l_lstm_fwd, x)
    output_bck = helper.get_output(l_lstm_bck, x)

    output_fwd_val = output_fwd.eval({x: x_in})
    output_bck_val = output_bck.eval({x: x_in})

    # test that the backwards model reverses its final input
    np.testing.assert_almost_equal(output_fwd_val, output_bck_val[:, ::-1])
test_recurrent.py 文件源码 项目:seq2seq-lasagne 作者: erfannoury 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_lstm_return_final():
    num_batch, seq_len, n_features = 2, 3, 4
    num_units = 2
    in_shp = (num_batch, seq_len, n_features)
    x_in = np.random.random(in_shp).astype('float32')

    l_inp = InputLayer(in_shp)
    lasagne.random.get_rng().seed(1234)
    l_rec_final = LSTMLayer(l_inp, num_units, only_return_final=True)
    lasagne.random.get_rng().seed(1234)
    l_rec_all = LSTMLayer(l_inp, num_units, only_return_final=False)

    output_final = helper.get_output(l_rec_final).eval({l_inp.input_var: x_in})
    output_all = helper.get_output(l_rec_all).eval({l_inp.input_var: x_in})

    assert output_final.shape == (output_all.shape[0], output_all.shape[2])
    assert output_final.shape == lasagne.layers.get_output_shape(l_rec_final)
    assert np.allclose(output_final, output_all[:, -1])
enhance.py 文件源码 项目:neural-enhance 作者: alexjc 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self):
        self.network = collections.OrderedDict()
        self.network['img'] = InputLayer((None, 3, None, None))
        self.network['seed'] = InputLayer((None, 3, None, None))

        config, params = self.load_model()
        self.setup_generator(self.last_layer(), config)

        if args.train:
            concatenated = lasagne.layers.ConcatLayer([self.network['img'], self.network['out']], axis=0)
            self.setup_perceptual(concatenated)
            self.load_perceptual()
            self.setup_discriminator()
        self.load_generator(params)
        self.compile()

    #------------------------------------------------------------------------------------------------------------------
    # Network Configuration
    #------------------------------------------------------------------------------------------------------------------
model.py 文件源码 项目:gogh-figure 作者: joelmoniz 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def setup_transform_net(self, input_var=None):
        transform_net = InputLayer(shape=self.shape, input_var=input_var)
        transform_net = style_conv_block(transform_net, self.num_styles, 32, 9, 1)
        transform_net = style_conv_block(transform_net, self.num_styles, 64, 3, 2)
        transform_net = style_conv_block(transform_net, self.num_styles, 128, 3, 2)
        for _ in range(5):
            transform_net = residual_block(transform_net, self.num_styles)
        transform_net = nn_upsample(transform_net, self.num_styles)
        transform_net = nn_upsample(transform_net, self.num_styles)

        if self.net_type == 0:
            transform_net = style_conv_block(transform_net, self.num_styles, 3, 9, 1, tanh)
            transform_net = ExpressionLayer(transform_net, lambda X: 150.*X, output_shape=None)
        elif self.net_type == 1:
            transform_net = style_conv_block(transform_net, self.num_styles, 3, 9, 1, sigmoid)

        self.network['transform_net'] = transform_net
adda_network.py 文件源码 项目:adda_mnist64 作者: davidtellez 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def network_classifier(self, input_var):

        network = {}
        network['classifier/input'] = InputLayer(shape=(None, 3, 64, 64), input_var=input_var, name='classifier/input')
        network['classifier/conv1'] = Conv2DLayer(network['classifier/input'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv1')
        network['classifier/pool1'] = MaxPool2DLayer(network['classifier/conv1'], pool_size=2, stride=2, pad=0, name='classifier/pool1')
        network['classifier/conv2'] = Conv2DLayer(network['classifier/pool1'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv2')
        network['classifier/pool2'] = MaxPool2DLayer(network['classifier/conv2'], pool_size=2, stride=2, pad=0, name='classifier/pool2')
        network['classifier/conv3'] = Conv2DLayer(network['classifier/pool2'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv3')
        network['classifier/pool3'] = MaxPool2DLayer(network['classifier/conv3'], pool_size=2, stride=2, pad=0, name='classifier/pool3')
        network['classifier/conv4'] = Conv2DLayer(network['classifier/pool3'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv4')
        network['classifier/pool4'] = MaxPool2DLayer(network['classifier/conv4'], pool_size=2, stride=2, pad=0, name='classifier/pool4')
        network['classifier/dense1'] = DenseLayer(network['classifier/pool4'], num_units=64, nonlinearity=rectify, name='classifier/dense1')
        network['classifier/output'] = DenseLayer(network['classifier/dense1'], num_units=10, nonlinearity=softmax, name='classifier/output')

        return network
CAE.py 文件源码 项目:ConvolutionalAutoEncoder 作者: ToniCreswell 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def build_net(nz=10):
    # nz = size of latent code
    #N.B. using batch_norm applies bn before non-linearity!
    F=32
    enc = InputLayer(shape=(None,1,28,28))
    enc = Conv2DLayer(incoming=enc, num_filters=F*2, filter_size=5,stride=2, nonlinearity=lrelu(0.2),pad=2)
    enc = Conv2DLayer(incoming=enc, num_filters=F*4, filter_size=5,stride=2, nonlinearity=lrelu(0.2),pad=2)
    enc = Conv2DLayer(incoming=enc, num_filters=F*4, filter_size=5,stride=1, nonlinearity=lrelu(0.2),pad=2)
    enc = reshape(incoming=enc, shape=(-1,F*4*7*7))
    enc = DenseLayer(incoming=enc, num_units=nz, nonlinearity=sigmoid)
    #Generator networks
    dec = InputLayer(shape=(None,nz))
    dec = DenseLayer(incoming=dec, num_units=F*4*7*7)
    dec = reshape(incoming=dec, shape=(-1,F*4,7,7))
    dec = Deconv2DLayer(incoming=dec, num_filters=F*4, filter_size=4, stride=2, nonlinearity=relu, crop=1)
    dec = Deconv2DLayer(incoming=dec, num_filters=F*4, filter_size=4, stride=2, nonlinearity=relu, crop=1)
    dec = Deconv2DLayer(incoming=dec, num_filters=1, filter_size=3, stride=1, nonlinearity=sigmoid, crop=1)

    return enc, dec
model.py 文件源码 项目:StockPredictor 作者: wallsbreaker 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def build_dnn(input_var, output_nodes, n_chanels, input_size, reshaped_input_size, activity):
    """
    Builds the complete network with 1D-conv1d layer to integrate time from sequences of EEG images.

    :param input_vars: list of EEG images (one image per time window)
    :param output_nodes: number of classes
    :return: a pointer to the output of last layer
    """
    # Input layer
    network = InputLayer(shape=(None, 1, input_size), input_var=input_var)

    #network = ReshapeLayer(network, (([0], n_chanels, reshaped_input_size)))

    network = batch_norm(DenseLayer(network, num_units=7680, nonlinearity=tanh))

    network = batch_norm(DenseLayer(network, num_units=3840, nonlinearity=tanh))

    network = batch_norm(DenseLayer(network, num_units=1920, nonlinearity=tanh))

    network = batch_norm(DenseLayer(network, num_units=960, nonlinearity=tanh))

    network = batch_norm(DenseLayer(network, num_units=output_nodes, nonlinearity=activity))

    return network
model.py 文件源码 项目:StockPredictor 作者: wallsbreaker 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def build_lstm(input_var, output_nodes, n_chanels, input_size, reshaped_input_size, activity):
    """
    Builds the complete network with 1D-conv1d layer to integrate time from sequences of EEG images.

    :param input_vars: list of EEG images (one image per time window)
    :param output_nodes: number of classes
    :return: a pointer to the output of last layer
    """
    # Input layer
    network = InputLayer(shape=(None, 1, input_size), input_var=input_var)

    network = ReshapeLayer(network, (([0], n_chanels, reshaped_input_size)))

    network = LSTMLayer(network, num_units=8, nonlinearity=tanh)

    network = LSTMLayer(network, num_units=1, nonlinearity=tanh)

    network = DenseLayer(network, num_units=output_nodes, nonlinearity=activity)

    return network
models.py 文件源码 项目:twitter_caption 作者: tencia 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_rnn(conv_input_var, seq_input_var, conv_shape, word_dims, n_hid, lstm_layers):
    ret = {}
    ret['seq_input'] = seq_layer = InputLayer((None, None, word_dims), input_var=seq_input_var)
    batchsize, seqlen, _ = seq_layer.input_var.shape
    ret['seq_resh'] = seq_layer = ReshapeLayer(seq_layer, shape=(-1, word_dims))
    ret['seq_proj'] = seq_layer = DenseLayer(seq_layer, num_units=n_hid)
    ret['seq_resh2'] = seq_layer = ReshapeLayer(seq_layer, shape=(batchsize, seqlen, n_hid))
    ret['conv_input'] = conv_layer = InputLayer(conv_shape, input_var = conv_input_var)
    ret['conv_proj'] = conv_layer = DenseLayer(conv_layer, num_units=n_hid)
    ret['conv_resh'] = conv_layer = ReshapeLayer(conv_layer, shape=([0], 1, -1))
    ret['input_concat'] = layer = ConcatLayer([conv_layer, seq_layer], axis=1)
    for lstm_layer_idx in xrange(lstm_layers):
        ret['lstm_{}'.format(lstm_layer_idx)] = layer = LSTMLayer(layer, n_hid)
    ret['out_resh'] = layer = ReshapeLayer(layer, shape=(-1, n_hid))
    ret['output_proj'] = layer = DenseLayer(layer, num_units=word_dims, nonlinearity=log_softmax)
    ret['output'] = layer = ReshapeLayer(layer, shape=(batchsize, seqlen+1, word_dims))
    ret['output'] = layer = SliceLayer(layer, indices=slice(None, -1), axis=1)
    return ret

# originally from
# https://github.com/Lasagne/Recipes/blob/master/examples/styletransfer/Art%20Style%20Transfer.ipynb
unimodal.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=adadelta,
        update_learning_rate=0.01,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
trimodal_with_val.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
trimodal.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder
bimodal.py 文件源码 项目:ip-avsr 作者: lzuwei 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def extract_encoder(dbn):
    dbn_layers = dbn.get_all_layers()
    encoder = NeuralNet(
        layers=[
            (InputLayer, {'name': 'input', 'shape': dbn_layers[0].shape}),
            (DenseLayer, {'name': 'l1', 'num_units': dbn_layers[1].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[1].W, 'b': dbn_layers[1].b}),
            (DenseLayer, {'name': 'l2', 'num_units': dbn_layers[2].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[2].W, 'b': dbn_layers[2].b}),
            (DenseLayer, {'name': 'l3', 'num_units': dbn_layers[3].num_units, 'nonlinearity': sigmoid,
                          'W': dbn_layers[3].W, 'b': dbn_layers[3].b}),
            (DenseLayer, {'name': 'l4', 'num_units': dbn_layers[4].num_units, 'nonlinearity': linear,
                          'W': dbn_layers[4].W, 'b': dbn_layers[4].b}),
        ],
        update=nesterov_momentum,
        update_learning_rate=0.001,
        update_momentum=0.5,
        objective_l2=0.005,
        verbose=1,
        regression=True
    )
    encoder.initialize()
    return encoder


问题


面经


文章

微信
公众号

扫码关注公众号