python类activations()的实例源码

test_activations.py 文件源码 项目:keras-recommendation 作者: sonyisme 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_softmax():

    from keras.activations import softmax as s

    # Test using a reference implementation of softmax
    def softmax(values):
        m = max(values)
        values = numpy.array(values)
        e = numpy.exp(values - m)
        dist = list(e / numpy.sum(e))

        return dist

    x = T.vector()
    exp = s(x)
    f = theano.function([x], exp)
    test_values=get_standard_values()

    result = f(test_values)
    expected = softmax(test_values)

    print(str(result))
    print(str(expected))

    list_assert_equal(result, expected)
test_activations.py 文件源码 项目:keras-recommendation 作者: sonyisme 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_relu():
    '''
    Relu implementation doesn't depend on the value being
    a theano variable. Testing ints, floats and theano tensors.
    '''

    from keras.activations import relu as r

    assert r(5) == 5
    assert r(-5) == 0
    assert r(-0.1) == 0
    assert r(0.1) == 0.1

    x = T.vector()
    exp = r(x)
    f = theano.function([x], exp)

    test_values = get_standard_values()
    result = f(test_values)

    list_assert_equal(result, test_values) # because no negatives in test values
test_activations.py 文件源码 项目:keras-recommendation 作者: sonyisme 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_tanh():

    from keras.activations import tanh as t
    test_values = get_standard_values()

    x = T.vector()
    exp = t(x)
    f = theano.function([x], exp)

    result = f(test_values)
    expected = [math.tanh(v) for v in test_values]

    print(result)
    print(expected)

    list_assert_equal(result, expected)
test_activations.py 文件源码 项目:deep-coref 作者: clarkkev 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_softmax():

    from keras.activations import softmax as s

    # Test using a reference implementation of softmax
    def softmax(values):
        m = max(values)
        values = numpy.array(values)
        e = numpy.exp(values - m)
        dist = list(e / numpy.sum(e))

        return dist

    x = T.vector()
    exp = s(x)
    f = theano.function([x], exp)
    test_values = get_standard_values()

    result = f(test_values)
    expected = softmax(test_values)

    print(str(result))
    print(str(expected))

    list_assert_equal(result, expected)
test_activations.py 文件源码 项目:deep-coref 作者: clarkkev 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_relu():
    '''
    Relu implementation doesn't depend on the value being
    a theano variable. Testing ints, floats and theano tensors.
    '''

    from keras.activations import relu as r

    assert r(5) == 5
    assert r(-5) == 0
    assert r(-0.1) == 0
    assert r(0.1) == 0.1

    x = T.vector()
    exp = r(x)
    f = theano.function([x], exp)

    test_values = get_standard_values()
    result = f(test_values)

    list_assert_equal(result, test_values)  # because no negatives in test values
test_activations.py 文件源码 项目:RecommendationSystem 作者: TURuibo 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_softmax():

    from keras.activations import softmax as s

    # Test using a reference implementation of softmax
    def softmax(values):
        m = max(values)
        values = numpy.array(values)
        e = numpy.exp(values - m)
        dist = list(e / numpy.sum(e))

        return dist

    x = T.vector()
    exp = s(x)
    f = theano.function([x], exp)
    test_values=get_standard_values()

    result = f(test_values)
    expected = softmax(test_values)

    print(str(result))
    print(str(expected))

    list_assert_equal(result, expected)
test_activations.py 文件源码 项目:RecommendationSystem 作者: TURuibo 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_relu():
    '''
    Relu implementation doesn't depend on the value being
    a theano variable. Testing ints, floats and theano tensors.
    '''

    from keras.activations import relu as r

    assert r(5) == 5
    assert r(-5) == 0
    assert r(-0.1) == 0
    assert r(0.1) == 0.1

    x = T.vector()
    exp = r(x)
    f = theano.function([x], exp)

    test_values = get_standard_values()
    result = f(test_values)

    list_assert_equal(result, test_values) # because no negatives in test values
test_activations.py 文件源码 项目:RecommendationSystem 作者: TURuibo 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_tanh():

    from keras.activations import tanh as t
    test_values = get_standard_values()

    x = T.vector()
    exp = t(x)
    f = theano.function([x], exp)

    result = f(test_values)
    expected = [math.tanh(v) for v in test_values]

    print(result)
    print(expected)

    list_assert_equal(result, expected)
test_activations.py 文件源码 项目:keras-recommendation 作者: sonyisme 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_linear():
    '''
    This function does no input validation, it just returns the thing
    that was passed in.
    '''

    from keras.activations import linear as l

    xs = [1, 5, True, None, 'foo']

    for x in xs:
        assert x == l(x)
test_activations.py 文件源码 项目:deep-coref 作者: clarkkev 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_tanh():
    from keras.activations import tanh as t
    test_values = get_standard_values()

    x = T.vector()
    exp = t(x)
    f = theano.function([x], exp)

    result = f(test_values)
    expected = [math.tanh(v) for v in test_values]

    print(result)
    print(expected)

    list_assert_equal(result, expected)
test_activations.py 文件源码 项目:deep-coref 作者: clarkkev 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def test_linear():
    '''
    This function does no input validation, it just returns the thing
    that was passed in.
    '''

    from keras.activations import linear as l

    xs = [1, 5, True, None, 'foo']

    for x in xs:
        assert x == l(x)
test_activations.py 文件源码 项目:RecommendationSystem 作者: TURuibo 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_linear():
    '''
    This function does no input validation, it just returns the thing
    that was passed in.
    '''

    from keras.activations import linear as l

    xs = [1, 5, True, None, 'foo']

    for x in xs:
        assert x == l(x)


问题


面经


文章

微信
公众号

扫码关注公众号