python类backend()的实例源码

utils_tf.py 文件源码 项目:FeatureSqueezing 作者: uvasrg 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def tf_model_eval_distance(sess, x, model1, model2, X_test):
    """
    Compute the L1 distance between prediction of original and squeezed data.
    :param sess: TF session to use when training the graph
    :param x: input placeholder
    :param model1: model output original predictions
    :param model2: model output squeezed predictions
    :param X_test: numpy array with training inputs
    :return: a float vector with the distance value
    """
    # Define sympbolic for accuracy
    # acc_value = keras.metrics.categorical_accuracy(y, model)

    l2_diff = tf.sqrt( tf.reduce_sum(tf.square(tf.sub(model1, model2)),
                                    axis=1))
    l_inf_diff = tf.reduce_max(tf.abs(tf.sub(model1, model2)), axis=1)
    l1_diff = tf.reduce_sum(tf.abs(tf.sub(model1, model2)), axis=1)

    l1_dist_vec = np.zeros((len(X_test)))

    with sess.as_default():
        # Compute number of batches
        nb_batches = int(math.ceil(float(len(X_test)) / FLAGS.batch_size))
        assert nb_batches * FLAGS.batch_size >= len(X_test)

        for batch in range(nb_batches):
            if batch % 100 == 0 and batch > 0:
                print("Batch " + str(batch))

            # Must not use the `batch_indices` function here, because it
            # repeats some examples.
            # It's acceptable to repeat during training, but not eval.
            start = batch * FLAGS.batch_size
            end = min(len(X_test), start + FLAGS.batch_size)
            cur_batch_size = end - start

            l1_dist_vec[start:end] = l1_diff.eval(feed_dict={x: X_test[start:end],keras.backend.learning_phase(): 0})

        assert end >= len(X_test)
    return l1_dist_vec
torch_backend.py 文件源码 项目:ktorch 作者: farizrahman4u 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def placeholder(shape=None, ndim=None, dtype=None, sparse=False, name=None):
    name = _prepare_name(name, 'placeholder')
    if sparse:
        raise Exception('Sparse tensors are not supported yet :( ')
    if dtype is None:
        dtype = keras.backend.floatx()
    ktorch_tensor = Tensor(name=name, shape=shape, ndim=ndim, dtype=dtype)
    make_keras_tensor(ktorch_tensor)
    ktorch_tensor._ktorch_placeholder = True
    return ktorch_tensor
cifar10_ae.py 文件源码 项目:dem 作者: hengyuan-hu 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def decode(y, relu_max):
    print 'decoder input shape:', y._keras_shape
    assert len(y._keras_shape) == 2
    if relu_max:
        x = GaussianNoise(0.2)(y)
        # x = Activation(utils.relu_n(1))(x)
    else:
        x = y

    x = Reshape((1, 1, LATENT_DIM))(x)
    # 1, 1, LATENT_DIM
    if relu_max:
        print 'in decode: relu_max:', relu_max
        x = Activation(utils.scale_up(relu_max))(x)
    # x = BN(mode=2, axis=3)(x) # this bn seems not good? NOT VERIFIED

    # why use 512 instead of 256 here?
    batch_size = keras.backend.shape(x)[0]
    x = Deconv2D(512, 4, 4, output_shape=[batch_size, 4, 4, 512],
                 activation='relu', border_mode='same', subsample=(4,4))(x)
    x = BN(mode=2, axis=3)(x)
    # 4, 4, 512
    x = Deconv2D(256, 5, 5, output_shape=[batch_size, 8, 8, 256],
                 activation='relu', border_mode='same', subsample=(2,2))(x)
    x = BN(mode=2, axis=3)(x)
    # 8, 8, 256
    x = Deconv2D(128, 5, 5, output_shape=(batch_size, 16, 16, 128),
                 activation='relu', border_mode='same', subsample=(2,2))(x)
    x = BN(mode=2, axis=3)(x)
    # 16, 16, 256
    x = Deconv2D(64, 5, 5, output_shape=(batch_size, 32, 32, 64),
                 activation='relu', border_mode='same', subsample=(2,2))(x)
    x = BN(mode=2, axis=3)(x)
    # 32, 32, 64
    x = Deconv2D(3, 5, 5, output_shape=(batch_size, 32, 32, 3),
                 activation='linear', border_mode='same', subsample=(1,1))(x)
    # 32, 32, 3
    x = BN(mode=2, axis=3)(x)
    return x
test_keras_backend.py 文件源码 项目:python-alp 作者: tboquet 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def new_session():
    if K.backend() == 'tensorflow':  # pragma: no cover
        import tensorflow as tf
        K.clear_session()
        config = tf.ConfigProto(allow_soft_placement=True)
        config.gpu_options.allow_growth = True
        session = tf.Session(config=config)
        K.set_session(session)
test_keras_backend.py 文件源码 项目:python-alp 作者: tboquet 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_loss():
    def return_loss():
        import keras.backend as K
        def cat_cross(y_true, y_pred):
            '''A test of custom loss function
            '''
            return K.categorical_crossentropy(y_pred, y_true)
        return cat_cross
    return return_loss
test_keras_backend.py 文件源码 项目:python-alp 作者: tboquet 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_metric():
    def return_metric():
        import keras.backend as K
        def cosine_proximity(y_true, y_pred):
            y_true = K.l2_normalize(y_true, axis=-1)
            y_pred = K.l2_normalize(y_pred, axis=-1)
            return -K.mean(y_true * y_pred)
        return cosine_proximity
    return return_metric
test_keras_backend.py 文件源码 项目:python-alp 作者: tboquet 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_experiment_fit(self, get_model, get_loss_metric,
                            get_custom_l, get_callback_fix):
        new_session()
        data, data_val = make_data(train_samples, test_samples)
        model, metrics, cust_objects = prepare_model(get_model(get_custom_l),
                                                     get_loss_metric,
                                                     get_custom_l)

        expe = Experiment(model)

        for mod in [None, model]:
            for data_val_loc in [None, data_val]:
                expe.fit([data], [data_val_loc], model=mod, nb_epoch=2,
                         batch_size=batch_size, metrics=metrics,
                         custom_objects=cust_objects, overwrite=True,
                         callbacks=get_callback_fix)

        expe.backend_name = 'another_backend'
        expe.load_model()
        expe.load_model(expe.mod_id, expe.data_id)

        assert expe.data_id is not None
        assert expe.mod_id is not None
        assert expe.params_dump is not None

        if K.backend() == 'tensorflow':
            K.clear_session()

        print(self)
test_keras_backend.py 文件源码 项目:python-alp 作者: tboquet 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_experiment_fit_gen(self, get_model, get_loss_metric,
                                get_custom_l, get_callback_fix):
        new_session()
        model, metrics, cust_objects = prepare_model(get_model(get_custom_l),
                                                     get_loss_metric,
                                                     get_custom_l)

        model_name = model.__class__.__name__
        _, data_val_use = make_data(train_samples, test_samples)
        expe = Experiment(model)

        for val in [1, data_val_use]:
            gen, data, data_stream = make_gen(batch_size)
            if val == 1:
                val, data_2, data_stream_2 = make_gen(batch_size)
            expe.fit_gen([gen], [val], nb_epoch=2,
                         model=model,
                         metrics=metrics,
                         custom_objects=cust_objects,
                         samples_per_epoch=64,
                         nb_val_samples=128,
                         verbose=2, overwrite=True,
                         callbacks=get_callback_fix)

            close_gens(gen, data, data_stream)
            if val == 1:
                close_gens(val, data_2, data_stream_2)

        if K.backend() == 'tensorflow':
            K.clear_session()

        print(self)
test_keras_backend.py 文件源码 项目:python-alp 作者: tboquet 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_experiment_fit_gen_async(self, get_model, get_loss_metric,
                                      get_custom_l):
        new_session()
        model, metrics, cust_objects = prepare_model(get_model(get_custom_l),
                                                     get_loss_metric,
                                                     get_custom_l)

        _, data_val_use = make_data(train_samples, test_samples)
        expe = Experiment(model)

        expected_value = 2
        for val in [None, 1, data_val_use]:
            gen, data, data_stream = make_gen(batch_size)
            if val == 1:
                val, data_2, data_stream_2 = make_gen(batch_size)
            _, thread = expe.fit_gen_async([gen], [val], nb_epoch=2,
                                           model=model,
                                           metrics=metrics,
                                           custom_objects=cust_objects,
                                           samples_per_epoch=64,
                                           nb_val_samples=128,
                                           verbose=2, overwrite=True)

            thread.join()

            for k in expe.full_res['metrics']:
                if 'iter' not in k:
                    assert len(
                        expe.full_res['metrics'][k]) == expected_value

            close_gens(gen, data, data_stream)
            if val == 1:
                close_gens(val, data_2, data_stream_2)

        if K.backend() == 'tensorflow':
            K.clear_session()

        print(self)
test_keras_backend.py 文件源码 项目:python-alp 作者: tboquet 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_deserialization(self):
        new_session()
        model = sequential()
        model.compile(optimizer='sgd', loss='categorical_crossentropy')
        ser_mod = to_dict_w_opt(model)
        custom_objects = {'test_loss': [1, 2]}
        custom_objects = {k: serialize(custom_objects[k])
                          for k in custom_objects}
        model_from_dict_w_opt(ser_mod, custom_objects=custom_objects)

        if K.backend() == 'tensorflow':
            K.clear_session()

        print(self)
utils_tf.py 文件源码 项目:FeatureSqueezing 作者: QData 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def tf_model_eval_distance_dual_input(sess, x, model, X_test1, X_test2):
    """
    Compute the L1 distance between prediction of original and squeezed data.
    :param sess: TF session to use when training the graph
    :param x: input placeholder
    :param y: output placeholder (for labels)
    :param model: model output predictions
    :param X_test: numpy array with training inputs
    :param Y_test: numpy array with training outputs
    :return: a float with the accuracy value
    """
    # Define sympbolic for accuracy
    # acc_value = keras.metrics.categorical_accuracy(y, model)

    # l2_diff = tf.sqrt( tf.reduce_sum(tf.square(tf.sub(model1, model2)),
    #                                 axis=1))
    # l_inf_diff = tf.reduce_max(tf.abs(tf.sub(model1, model2)), axis=1)
    # l1_diff = tf.reduce_sum(tf.abs(tf.sub(model1, model2)), axis=1)

    l1_dist_vec = np.zeros((len(X_test1)))

    with sess.as_default():
        # Compute number of batches
        nb_batches = int(math.ceil(float(len(X_test1)) / FLAGS.batch_size))
        assert nb_batches * FLAGS.batch_size >= len(X_test1)

        for batch in range(nb_batches):
            if batch % 100 == 0 and batch > 0:
                print("Batch " + str(batch))

            # Must not use the `batch_indices` function here, because it
            # repeats some examples.
            # It's acceptable to repeat during training, but not eval.
            start = batch * FLAGS.batch_size
            end = min(len(X_test1), start + FLAGS.batch_size)
            cur_batch_size = end - start

            pred_1 = model.eval(feed_dict={x: X_test1[start:end],keras.backend.learning_phase(): 0})
            pred_2 = model.eval(feed_dict={x: X_test2[start:end],keras.backend.learning_phase(): 0})

            l1_dist_vec[start:end] = np.sum(np.abs(pred_1 - pred_2), axis=1)
        assert end >= len(X_test1)

    return l1_dist_vec
utils_tf.py 文件源码 项目:FeatureSqueezing 作者: QData 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def tf_model_eval_dist_tri_input(sess, x, model, X_test1, X_test2, X_test3, mode = 'max'):
    """
    Compute the accuracy of a TF model on some data
    :param sess: TF session to use when training the graph
    :param x: input placeholder
    :param model: model output predictions
    :param X_test[1,2,3]: numpy array with testing inputs
    :param Y_test: numpy array with training outputs
    :return: a float with the accuracy value
    """

    l1_dist_vec = np.zeros((len(X_test1)))

    with sess.as_default():
        # Compute number of batches
        nb_batches = int(math.ceil(float(len(X_test1)) / FLAGS.batch_size))
        assert nb_batches * FLAGS.batch_size >= len(X_test1)

        for batch in range(nb_batches):
            if batch % 100 == 0 and batch > 0:
                print("Batch " + str(batch))

            # Must not use the `batch_indices` function here, because it
            # repeats some examples.
            # It's acceptable to repeat during training, but not eval.
            start = batch * FLAGS.batch_size
            end = min(len(X_test1), start + FLAGS.batch_size)
            cur_batch_size = end - start

            pred_1 = model.eval(feed_dict={x: X_test1[start:end],keras.backend.learning_phase(): 0})
            pred_2 = model.eval(feed_dict={x: X_test2[start:end],keras.backend.learning_phase(): 0})
            pred_3 = model.eval(feed_dict={x: X_test3[start:end],keras.backend.learning_phase(): 0})

            l11 = np.sum(np.abs(pred_1 - pred_2), axis=1)
            l12 = np.sum(np.abs(pred_1 - pred_3), axis=1)
            l13 = np.sum(np.abs(pred_2 - pred_3), axis=1)

            if mode == 'max':
                l1_dist_vec[start:end] = np.max(np.array([l11, l12, l13]), axis=0)
            elif mode == 'mean':
                l1_dist_vec[start:end] = np.mean(np.array([l11, l12, l13]), axis=0)
        assert end >= len(X_test1)

        # Divide by number of examples to get final value

    return l1_dist_vec
jsmacifar.py 文件源码 项目:AdversarialMachineLearning_COMP551 作者: arunrawlani 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def cnn_model(logits=False, input_ph=None, img_rows=28, img_cols=28,
              channels=1, nb_filters=64, nb_classes=10):
    """
        Defines a CNN model using Keras sequential model
        :param logits: If set to False, returns a Keras model, otherwise will also
        return logits tensor
        :param input_ph: The TensorFlow tensor for the input
        (needed if returning logits)
        ("ph" stands for placeholder but it need not actually be a
        placeholder)
        :param img_rows: number of row in the image
        :param img_cols: number of columns in the image
        :param channels: number of color channels (e.g., 1 for MNIST)
        :param nb_filters: number of convolutional filters per layer
        :param nb_classes: the number of output classes
        :return:
        """
    model = Sequential()

    # Define the layers successively (convolution layers are version dependent)
    if keras.backend.image_dim_ordering() == 'th':
        input_shape = (channels, img_rows, img_cols)
    else:
        input_shape = (img_rows, img_cols, channels)

    layers = [Dropout(0.2, input_shape=input_shape),
              conv_2d(nb_filters, (8, 8), (2, 2), "same"),
              Activation('relu'),
              conv_2d((nb_filters * 2), (6, 6), (2, 2), "valid"),
              Activation('relu'),
              conv_2d((nb_filters * 2), (5, 5), (1, 1), "valid"),
              Activation('relu'),
              Dropout(0.5),
              Flatten(),
              Dense(nb_classes)]

    for layer in layers:
        model.add(layer)

    if logits:
        logits_tensor = model(input_ph)
    model.add(Activation('softmax'))

    if logits:
        return model, logits_tensor
    else:
        return model
jsmastl.py 文件源码 项目:AdversarialMachineLearning_COMP551 作者: arunrawlani 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def cnn_model(logits=False, input_ph=None, img_rows=28, img_cols=28,
              channels=1, nb_filters=64, nb_classes=10):
    """
        Defines a CNN model using Keras sequential model
        :param logits: If set to False, returns a Keras model, otherwise will also
        return logits tensor
        :param input_ph: The TensorFlow tensor for the input
        (needed if returning logits)
        ("ph" stands for placeholder but it need not actually be a
        placeholder)
        :param img_rows: number of row in the image
        :param img_cols: number of columns in the image
        :param channels: number of color channels (e.g., 1 for MNIST)
        :param nb_filters: number of convolutional filters per layer
        :param nb_classes: the number of output classes
        :return:
        """
    model = Sequential()

    # Define the layers successively (convolution layers are version dependent)
    if keras.backend.image_dim_ordering() == 'th':
        input_shape = (channels, img_rows, img_cols)
    else:
        input_shape = (img_rows, img_cols, channels)

    layers = [Dropout(0.2, input_shape=input_shape),
              conv_2d(nb_filters, (8, 8), (2, 2), "same"),
              Activation('relu'),
              conv_2d((nb_filters * 2), (6, 6), (2, 2), "valid"),
              Activation('relu'),
              conv_2d((nb_filters * 2), (5, 5), (1, 1), "valid"),
              Activation('relu'),
              Dropout(0.5),
              Flatten(),
              Dense(nb_classes)]

    for layer in layers:
        model.add(layer)

    if logits:
        logits_tensor = model(input_ph)
    model.add(Activation('softmax'))

    if logits:
        return model, logits_tensor
    else:
        return model
utils_tf.py 文件源码 项目:FeatureSqueezing 作者: uvasrg 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def tf_model_eval_distance_dual_input(sess, x, model, X_test1, X_test2):
    """
    Compute the L1 distance between prediction of original and squeezed data.
    :param sess: TF session to use when training the graph
    :param x: input placeholder
    :param y: output placeholder (for labels)
    :param model: model output predictions
    :param X_test: numpy array with training inputs
    :param Y_test: numpy array with training outputs
    :return: a float with the accuracy value
    """
    # Define sympbolic for accuracy
    # acc_value = keras.metrics.categorical_accuracy(y, model)

    # l2_diff = tf.sqrt( tf.reduce_sum(tf.square(tf.sub(model1, model2)),
    #                                 axis=1))
    # l_inf_diff = tf.reduce_max(tf.abs(tf.sub(model1, model2)), axis=1)
    # l1_diff = tf.reduce_sum(tf.abs(tf.sub(model1, model2)), axis=1)

    l1_dist_vec = np.zeros((len(X_test1)))

    with sess.as_default():
        # Compute number of batches
        nb_batches = int(math.ceil(float(len(X_test1)) / FLAGS.batch_size))
        assert nb_batches * FLAGS.batch_size >= len(X_test1)

        for batch in range(nb_batches):
            if batch % 100 == 0 and batch > 0:
                print("Batch " + str(batch))

            # Must not use the `batch_indices` function here, because it
            # repeats some examples.
            # It's acceptable to repeat during training, but not eval.
            start = batch * FLAGS.batch_size
            end = min(len(X_test1), start + FLAGS.batch_size)
            cur_batch_size = end - start

            pred_1 = model.eval(feed_dict={x: X_test1[start:end],keras.backend.learning_phase(): 0})
            pred_2 = model.eval(feed_dict={x: X_test2[start:end],keras.backend.learning_phase(): 0})

            l1_dist_vec[start:end] = np.sum(np.abs(pred_1 - pred_2), axis=1)
        assert end >= len(X_test1)

    return l1_dist_vec
utils_tf.py 文件源码 项目:FeatureSqueezing 作者: uvasrg 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def tf_model_eval_dist_tri_input(sess, x, model, X_test1, X_test2, X_test3, mode = 'max'):
    """
    Compute the accuracy of a TF model on some data
    :param sess: TF session to use when training the graph
    :param x: input placeholder
    :param model: model output predictions
    :param X_test[1,2,3]: numpy array with testing inputs
    :param Y_test: numpy array with training outputs
    :return: a float with the accuracy value
    """

    l1_dist_vec = np.zeros((len(X_test1)))

    with sess.as_default():
        # Compute number of batches
        nb_batches = int(math.ceil(float(len(X_test1)) / FLAGS.batch_size))
        assert nb_batches * FLAGS.batch_size >= len(X_test1)

        for batch in range(nb_batches):
            if batch % 100 == 0 and batch > 0:
                print("Batch " + str(batch))

            # Must not use the `batch_indices` function here, because it
            # repeats some examples.
            # It's acceptable to repeat during training, but not eval.
            start = batch * FLAGS.batch_size
            end = min(len(X_test1), start + FLAGS.batch_size)
            cur_batch_size = end - start

            pred_1 = model.eval(feed_dict={x: X_test1[start:end],keras.backend.learning_phase(): 0})
            pred_2 = model.eval(feed_dict={x: X_test2[start:end],keras.backend.learning_phase(): 0})
            pred_3 = model.eval(feed_dict={x: X_test3[start:end],keras.backend.learning_phase(): 0})

            l11 = np.sum(np.abs(pred_1 - pred_2), axis=1)
            l12 = np.sum(np.abs(pred_1 - pred_3), axis=1)
            l13 = np.sum(np.abs(pred_2 - pred_3), axis=1)

            if mode == 'max':
                l1_dist_vec[start:end] = np.max(np.array([l11, l12, l13]), axis=0)
            elif mode == 'mean':
                l1_dist_vec[start:end] = np.mean(np.array([l11, l12, l13]), axis=0)
        assert end >= len(X_test1)

        # Divide by number of examples to get final value

    return l1_dist_vec
torch_backend.py 文件源码 项目:ktorch 作者: farizrahman4u 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def bias_add(x, bias, data_format=None):
    def _bias_add(X, data_format):
        x, bias = X
        from keras.backend import image_data_format, ndim, reshape
        if data_format is None:
            data_format = image_data_format()
        if data_format not in {'channels_first', 'channels_last'}:
            raise ValueError('Unknown data_format ' + str(data_format))
        if ndim(bias) != 1 and ndim(bias) != ndim(x) - 1:
            raise ValueError('Unexpected bias dimensions %d, '
                             'expect to be 1 or %d dimensions'
                             % (ndim(bias), ndim(x) - 1))
        bias_shape = tuple(bias.size())
        ndim_x = len(x.size())
        ndim_bias = len(bias_shape)
        if ndim_x == 5:
            if data_format == 'channels_first':
                if ndim_bias == 1:
                    bias = reshape(bias, (1, bias_shape[0], 1, 1, 1))
                else:
                    bias = reshape(bias, (1, bias_shape[3]) + bias_shape[:3])
            elif data_format == 'channels_last':
                if ndim_bias == 1:
                    bias = reshape(bias, (1, 1, 1, 1, bias_shape[0]))
                else:
                    bias = reshape(bias, (1,) + bias_shape)
        elif ndim_x == 4:
            if data_format == 'channels_first':
                if ndim_bias == 1:
                    bias = reshape(bias, (1, bias_shape[0], 1, 1))
                else:
                    bias = reshape(bias, (1, bias_shape[2]) + bias_shape[:2])
            elif data_format == 'channels_last':
                if ndim_bias == 1:
                    bias = reshape(bias, (1, 1, 1, bias_shape[0]))
                else:
                    bias = reshape(bias, (1,) + bias_shape)
        elif ndim_x == 3:
            if data_format == 'channels_first':
                if ndim_bias == 1:
                    bias = reshape(bias, (1, bias_shape[0], 1))
                else:
                    bias = reshape(bias, (1, bias_shape[1], bias_shape[0]))
            elif data_format == 'channels_last':
                if ndim_bias == 1:
                    bias = reshape(bias, (1, 1, bias_shape[0]))
                else:
                    bias = reshape(bias, (1,) + bias_shape)
        return x.add(bias.expand_as(x))

    def _compute_output_shape(X):
        return _get_shape(X[0])

    return get_op(_bias_add, output_shape=_compute_output_shape, arguments=[data_format])([x, bias])
stl_ae.py 文件源码 项目:dem 作者: hengyuan-hu 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def decode(y, relu_max):
    print 'decoder input shape:', y._keras_shape
    assert len(y._keras_shape) == 2
    if relu_max:
        x = GaussianNoise(0.2)(y)
        x = Activation(utils.relu_n(1))(x)
    else:
        x = y

    x = Reshape((1, 1, LATENT_DIM))(x)
    # 1, 1, LATENT_DIM
    if relu_max:
        print 'in decode: relu_max:', relu_max
        x = Activation(utils.scale_up(relu_max))(x)
    # x = BN(mode=2, axis=3)(x) # this bn seems not good? NOT VERIFIED

    # why use 512 instead of 256 here?
    batch_size = keras.backend.shape(x)[0]
    x = Deconv2D(512, 6, 6, output_shape=[batch_size, 6, 6, 512],
                 activation='relu', border_mode='same', subsample=(6,6))(x)
    x = BN(mode=2, axis=3)(x)
    # 6, 6, 512
    x = Deconv2D(256, 5, 5, output_shape=[batch_size, 12, 12, 256],
                 activation='relu', border_mode='same', subsample=(2,2))(x)
    x = BN(mode=2, axis=3)(x)
    # 12, 12, 256
    x = Deconv2D(128, 5, 5, output_shape=(batch_size, 24, 24, 128),
                 activation='relu', border_mode='same', subsample=(2,2))(x)
    x = BN(mode=2, axis=3)(x)
    # 24, 24, 128
    x = Deconv2D(64, 5, 5, output_shape=(batch_size, 48, 48, 64),
                 activation='relu', border_mode='same', subsample=(2,2))(x)
    x = BN(mode=2, axis=3)(x)
    # 48, 48, 64
    x = Deconv2D(32, 5, 5, output_shape=(batch_size, 96, 96, 32),
                 activation='relu', border_mode='same', subsample=(2,2))(x)
    x = BN(mode=2, axis=3)(x)
    # 96, 96, 32
    x = Deconv2D(3, 5, 5, output_shape=(batch_size, 96, 96, 3),
                 activation='linear', border_mode='same', subsample=(1,1))(x)
    # 32, 32, 3
    x = BN(mode=2, axis=3)(x)
    return x


问题


面经


文章

微信
公众号

扫码关注公众号