python类l1()的实例源码

test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input3'], 'l1': net['Regularization']}
        net['l0']['connection']['output'].append('l1')
        inp = data(net['l0'], '', 'l0')['l0']
        net = regularization(net['l1'], [inp], 'l1')
        model = Model(inp, net['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'ActivityRegularization')
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input2'], 'l1': net['Masking']}
        net['l0']['connection']['output'].append('l1')
        inp = data(net['l0'], '', 'l0')['l0']
        net = masking(net['l1'], [inp], 'l1')
        model = Model(inp, net['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'Masking')


# ********** Vision Layers Test **********
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input'], 'l1': net['Input2'], 'l2': net['Input4'], 'l3': net['Convolution']}
        # Conv 1D
        net['l1']['connection']['output'].append('l3')
        net['l3']['connection']['input'] = ['l1']
        net['l3']['params']['layer_type'] = '1D'
        net['l3']['shape']['input'] = net['l1']['shape']['output']
        net['l3']['shape']['output'] = [128, 12]
        inp = data(net['l1'], '', 'l1')['l1']
        temp = convolution(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[2].__class__.__name__, 'Conv1D')
        # Conv 2D
        net['l0']['connection']['output'].append('l0')
        net['l3']['connection']['input'] = ['l0']
        net['l3']['params']['layer_type'] = '2D'
        net['l3']['shape']['input'] = net['l0']['shape']['output']
        net['l3']['shape']['output'] = [128, 226, 226]
        inp = data(net['l0'], '', 'l0')['l0']
        temp = convolution(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[2].__class__.__name__, 'Conv2D')
        # Conv 3D
        net['l2']['connection']['output'].append('l3')
        net['l3']['connection']['input'] = ['l2']
        net['l3']['params']['layer_type'] = '3D'
        net['l3']['shape']['input'] = net['l2']['shape']['output']
        net['l3']['shape']['output'] = [128, 226, 226, 18]
        inp = data(net['l2'], '', 'l2')['l2']
        temp = convolution(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[2].__class__.__name__, 'Conv3D')
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input'], 'l1': net['Input2'], 'l2': net['Input4'], 'l3': net['Pooling']}
        # Pool 1D
        net['l1']['connection']['output'].append('l3')
        net['l3']['connection']['input'] = ['l1']
        net['l3']['params']['layer_type'] = '1D'
        net['l3']['shape']['input'] = net['l1']['shape']['output']
        net['l3']['shape']['output'] = [12, 12]
        inp = data(net['l1'], '', 'l1')['l1']
        temp = pooling(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[2].__class__.__name__, 'MaxPooling1D')
        # Pool 2D
        net['l0']['connection']['output'].append('l0')
        net['l3']['connection']['input'] = ['l0']
        net['l3']['params']['layer_type'] = '2D'
        net['l3']['shape']['input'] = net['l0']['shape']['output']
        net['l3']['shape']['output'] = [3, 226, 226]
        inp = data(net['l0'], '', 'l0')['l0']
        temp = pooling(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[2].__class__.__name__, 'MaxPooling2D')
        # Pool 3D
        net['l2']['connection']['output'].append('l3')
        net['l3']['connection']['input'] = ['l2']
        net['l3']['params']['layer_type'] = '3D'
        net['l3']['shape']['input'] = net['l2']['shape']['output']
        net['l3']['shape']['output'] = [3, 226, 226, 18]
        inp = data(net['l2'], '', 'l2')['l2']
        temp = pooling(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[2].__class__.__name__, 'MaxPooling3D')


# ********** Locally-connected Layers **********
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input'], 'l1': net['Input2'], 'l3': net['LocallyConnected']}
        # LocallyConnected 1D
        net['l1']['connection']['output'].append('l3')
        net['l3']['connection']['input'] = ['l1']
        net['l3']['params']['layer_type'] = '1D'
        inp = data(net['l1'], '', 'l1')['l1']
        temp = locally_connected(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[1].__class__.__name__, 'LocallyConnected1D')
        # LocallyConnected 2D
        net['l0']['connection']['output'].append('l0')
        net['l0']['shape']['output'] = [3, 10, 10]
        net['l3']['connection']['input'] = ['l0']
        net['l3']['params']['layer_type'] = '2D'
        inp = data(net['l0'], '', 'l0')['l0']
        temp = locally_connected(net['l3'], [inp], 'l3')
        model = Model(inp, temp['l3'])
        self.assertEqual(model.layers[1].__class__.__name__, 'LocallyConnected2D')


# ********** Recurrent Layers Test **********
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input2'], 'l1': net['RNN']}
        net['l0']['connection']['output'].append('l1')
        # # net = get_shapes(net)
        inp = data(net['l0'], '', 'l0')['l0']
        net = recurrent(net['l1'], [inp], 'l1')
        model = Model(inp, net['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'SimpleRNN')
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input2'], 'l1': net['LSTM']}
        net['l0']['connection']['output'].append('l1')
        inp = data(net['l0'], '', 'l0')['l0']
        net = recurrent(net['l1'], [inp], 'l1')
        model = Model(inp, net['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'LSTM')
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input2'], 'l1': net['GRU']}
        net['l0']['connection']['output'].append('l1')
        inp = data(net['l0'], '', 'l0')['l0']
        net = recurrent(net['l1'], [inp], 'l1')
        model = Model(inp, net['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'GRU')


# ********** Embed Layer Test *********
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input'], 'l1': net['Eltwise']}
        net['l0']['connection']['output'].append('l1')
        # Test 1
        inp = data(net['l0'], '', 'l0')['l0']
        temp = eltwise(net['l1'], [inp, inp], 'l1')
        model = Model(inp, temp['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'Multiply')
        # Test 2
        net['l1']['params']['layer_type'] = 'Sum'
        inp = data(net['l0'], '', 'l0')['l0']
        temp = eltwise(net['l1'], [inp, inp], 'l1')
        model = Model(inp, temp['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'Add')
        # Test 3
        net['l1']['params']['layer_type'] = 'Average'
        inp = data(net['l0'], '', 'l0')['l0']
        temp = eltwise(net['l1'], [inp, inp], 'l1')
        model = Model(inp, temp['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'Average')
        # Test 4
        net['l1']['params']['layer_type'] = 'Dot'
        inp = data(net['l0'], '', 'l0')['l0']
        temp = eltwise(net['l1'], [inp, inp], 'l1')
        model = Model(inp, temp['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'Dot')
        # Test 5
        net['l1']['params']['layer_type'] = 'Maximum'
        inp = data(net['l0'], '', 'l0')['l0']
        temp = eltwise(net['l1'], [inp, inp], 'l1')
        model = Model(inp, temp['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'Maximum')
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input'], 'l1': net['Concat']}
        net['l0']['connection']['output'].append('l1')
        inp = data(net['l0'], '', 'l0')['l0']
        net = concat(net['l1'], [inp, inp], 'l1')
        model = Model(inp, net['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'Concatenate')


# ********** Noise Layers Test **********
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input'], 'l1': net['GaussianDropout']}
        net['l0']['connection']['output'].append('l1')
        inp = data(net['l0'], '', 'l0')['l0']
        net = gaussian_dropout(net['l1'], [inp], 'l1')
        model = Model(inp, net['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'GaussianDropout')
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input'], 'l1': net['AlphaDropout']}
        net['l0']['connection']['output'].append('l1')
        inp = data(net['l0'], '', 'l0')['l0']
        net = alpha_dropout(net['l1'], [inp], 'l1')
        model = Model(inp, net['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'AlphaDropout')


# ********** Normalisation Layers Test **********
layers_export.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def regularization(layer, layer_in, layerId):
    l1 = layer['params']['l1']
    l2 = layer['params']['l2']
    out = {layerId: ActivityRegularization(l1=l1, l2=l2)(*layer_in)}
    return out
dm_resnet.py 文件源码 项目:dream2016_dm 作者: lishen 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def l1l2_penalty_reg(alpha=1.0, l1_ratio=0.5):
        '''Calculate L1 and L2 penalties for a Keras layer
        This follows the same formulation as in the R package glmnet and Sklearn
        Args:
            alpha ([float]): amount of regularization.
            l1_ratio ([float]): portion of L1 penalty. Setting to 1.0 equals 
                    Lasso.
        '''
        if l1_ratio == .0:
            return l2(alpha)
        elif l1_ratio == 1.:
            return l1(alpha)
        else:
            return l1l2(l1_ratio*alpha, 1./2*(1 - l1_ratio)*alpha)
test_regularizers.py 文件源码 项目:keras-recommendation 作者: sonyisme 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_W_reg(self):
        for reg in [regularizers.identity(), regularizers.l1(), regularizers.l2(), regularizers.l1l2()]:
            model = create_model(weight_reg=reg)
            model.compile(loss='categorical_crossentropy', optimizer='rmsprop')
            model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=0)
            model.evaluate(X_test[test_ids, :], Y_test[test_ids, :], verbose=0)
test_core.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def test_dense():
    from keras import regularizers
    from keras import constraints

    layer_test(core.Dense,
               kwargs={'output_dim': 3},
               input_shape=(3, 2))

    layer_test(core.Dense,
               kwargs={'output_dim': 3},
               input_shape=(3, 4, 2))

    layer_test(core.Dense,
               kwargs={'output_dim': 3},
               input_shape=(None, None, 2))

    layer_test(core.Dense,
               kwargs={'output_dim': 3},
               input_shape=(3, 4, 5, 2))

    layer_test(core.Dense,
               kwargs={'output_dim': 3,
                       'W_regularizer': regularizers.l2(0.01),
                       'b_regularizer': regularizers.l1(0.01),
                       'activity_regularizer': regularizers.activity_l2(0.01),
                       'W_constraint': constraints.MaxNorm(1),
                       'b_constraint': constraints.MaxNorm(1)},
               input_shape=(3, 2))
test_core.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_highway():
    from keras import regularizers
    from keras import constraints

    layer_test(core.Highway,
               kwargs={},
               input_shape=(3, 2))

    layer_test(core.Highway,
               kwargs={'W_regularizer': regularizers.l2(0.01),
                       'b_regularizer': regularizers.l1(0.01),
                       'activity_regularizer': regularizers.activity_l2(0.01),
                       'W_constraint': constraints.MaxNorm(1),
                       'b_constraint': constraints.MaxNorm(1)},
               input_shape=(3, 2))
autoencoder.py 文件源码 项目:dsde-deep-learning 作者: broadinstitute 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def build_simple_autoencoder(input_dim=784, encoding_dim=32, l1_penalty=0.):
    # this is the size of our encoded representations
    # 32 floats -> compression of factor 24.5, assuming the input is 784 floats
    # this is our input placeholder
    input_img = Input(shape=(input_dim,))

    # "encoded" is the encoded representation of the input
    encoded = Dense(encoding_dim, activation='relu',  activity_regularizer=regularizers.l1(l1_penalty))(input_img)

    # "decoded" is the lossy reconstruction of the input
    decoded = Dense(input_dim, activation='sigmoid')(encoded)

    # this model maps an input to its reconstruction
    autoencoder = Model(input_img, decoded)

    # this model maps an input to its encoded representation
    encoder = Model(input_img, encoded)

    # create a placeholder for an encoded (32-dimensional) input
    encoded_input = Input(shape=(encoding_dim,))
    # retrieve the last layer of the autoencoder model
    decoder_layer = autoencoder.layers[-1]
    # create the decoder model
    decoder = Model(encoded_input, decoder_layer(encoded_input))

    autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
    return encoder, decoder, autoencoder
train.py 文件源码 项目:kaggle-allstate-claims-severity 作者: alno 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def regularizer(params):
    if 'l1' in params and 'l2' in params:
        return regularizers.l1l2(params['l1'], params['l2'])
    elif 'l1' in params:
        return regularizers.l1(params['l1'])
    elif 'l2' in params:
        return regularizers.l2(params['l2'])
    else:
        return None
sst2_lstm.py 文件源码 项目:mtl 作者: zhenhongChen 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def sst2_run(index_embedding, dataset, num_words=5000, embedding_len=100, max_len=50):

    (x_train, y_train), (x_test, y_test), (x_dev, y_dev) = ds.load_data(dataset, num_words, has_dev=True)
    x_train = sequence.pad_sequences(x_train, maxlen=max_len)
    x_test = sequence.pad_sequences(x_test, maxlen=max_len)
    x_dev = sequence.pad_sequences(x_dev, maxlen=max_len)

    model = Sequential()
    model.add(Embedding(num_words, embedding_len, input_length=max_len, weights=[index_embedding]))
    model.add(LSTM(max_len, dropout=0.5, recurrent_dropout=0.5))
    model.add(Dense(1, activation='sigmoid', 
                    kernel_regularizer=regularizers.l2(0.01),
                    activity_regularizer=regularizers.l1(0.01)
            ))

    model.compile(loss='binary_crossentropy',
                    optimizer='adam',
                    metrics=['accuracy'])

    print(model.summary())
    model.fit(x_train, y_train, epochs=4, batch_size=32,
              validation_data=(x_dev, y_dev),  verbose=2)

    score, acc = model.evaluate(x_test, y_test, verbose=0)
    print('Test score:', score)
    print('Test accuracy:', acc)


问题


面经


文章

微信
公众号

扫码关注公众号