def __init__(self, output_dim,
init='glorot_uniform', inner_init='orthogonal',
activation='tanh', inner_activation='hard_sigmoid',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
shape_key=None, dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W, self.dropout_U = dropout_W, dropout_U
self.shape_key = shape_key or {}
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
kwargs['consume_less'] = 'gpu'
super(RTTN, self).__init__(**kwargs)
self.num_actions = 4
python类get()的实例源码
def __init__(self, output_dim,
init='glorot_uniform', inner_init='orthogonal',
forget_bias_init='one', activation='tanh',
inner_activation='hard_sigmoid',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.forget_bias_init = initializations.get(forget_bias_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W, self.dropout_U = dropout_W, dropout_U
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(DecoderVaeLSTM, self).__init__(**kwargs)
def __init__(self, output_dim,
init='glorot_uniform', inner_init='orthogonal',
forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.forget_bias_init = initializations.get(forget_bias_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W = dropout_W
self.dropout_U = dropout_U
self.stateful = False
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(QRNN, self).__init__(**kwargs)
def __init__(self,
W_regularizer=None, b_regularizer=None,
W_constraint=None, b_constraint=None,
bias=True, **kwargs):
"""
Keras Layer that implements an Attention mechanism for temporal data.
Supports Masking.
Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
# Input shape
3D tensor with shape: `(samples, steps, features)`.
# Output shape
2D tensor with shape: `(samples, features)`.
:param kwargs:
Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
The dimensions are inferred based on the output shape of the RNN.
Example:
model.add(LSTM(64, return_sequences=True))
model.add(Attention())
"""
self.supports_masking = True
self.init = initializations.get('glorot_uniform')
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
super(Attention, self).__init__(**kwargs)
def __init__(self, output_dim, window_size=3, stride=1,
kernel_initializer='uniform', bias_initializer='zero',
activation='linear', activity_regularizer=None,
kernel_regularizer=None, bias_regularizer=None,
kernel_constraint=None, bias_constraint=None,
use_bias=True, input_dim=None, input_length=None, **kwargs):
self.output_dim = output_dim
self.window_size = window_size
self.strides = (stride, 1)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.activation = activations.get(activation)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = [InputSpec(ndim=3)]
self.input_dim = input_dim
self.input_length = input_length
if self.input_dim:
kwargs['input_shape'] = (self.input_length, self.input_dim)
super(GCNN, self).__init__(**kwargs)
def __init__(self, units, window_size=2, stride=1,
return_sequences=False, go_backwards=False,
stateful=False, unroll=False, activation='tanh',
kernel_initializer='uniform', bias_initializer='zero',
kernel_regularizer=None, bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None, bias_constraint=None,
dropout=0, use_bias=True, input_dim=None, input_length=None,
**kwargs):
self.return_sequences = return_sequences
self.go_backwards = go_backwards
self.stateful = stateful
self.unroll = unroll
self.units = units
self.window_size = window_size
self.strides = (stride, 1)
self.use_bias = use_bias
self.activation = activations.get(activation)
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.dropout = dropout
self.supports_masking = True
self.input_spec = [InputSpec(ndim=3)]
self.input_dim = input_dim
self.input_length = input_length
if self.input_dim:
kwargs['input_shape'] = (self.input_length, self.input_dim)
super(QRNN, self).__init__(**kwargs)
def __init__(self, axis=-1,
gamma_init='one', beta_init='zero',
gamma_regularizer=None, beta_regularizer=None,
epsilon=1e-6, **kwargs):
super(LayerNormalization, self).__init__(**kwargs)
self.axis = to_list(axis)
self.gamma_init = initializers.get(gamma_init)
self.beta_init = initializers.get(beta_init)
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.epsilon = epsilon
self.supports_masking = True
def __init__(self,
ratio,
data_format=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(SE, self).__init__(**kwargs)
self.ratio = ratio
self.data_format= conv_utils.normalize_data_format(data_format)
self.use_bias = use_bias
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.supports_masking = True
FixedBatchNormalization.py 文件源码
项目:AerialCrackDetection_Keras
作者: TTMRonald
项目源码
文件源码
阅读 18
收藏 0
点赞 0
评论 0
def __init__(self, epsilon=1e-3, axis=-1,
weights=None, beta_init='zero', gamma_init='one',
gamma_regularizer=None, beta_regularizer=None, **kwargs):
self.supports_masking = True
self.beta_init = initializers.get(beta_init)
self.gamma_init = initializers.get(gamma_init)
self.epsilon = epsilon
self.axis = axis
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.initial_weights = weights
super(FixedBatchNormalization, self).__init__(**kwargs)
def __init__(self, epsilon=1e-3, axis=-1,
weights=None, beta_init='zero', gamma_init='one',
gamma_regularizer=None, beta_regularizer=None, **kwargs):
self.supports_masking = True
self.beta_init = initializers.get(beta_init)
self.gamma_init = initializers.get(gamma_init)
self.epsilon = epsilon
self.axis = axis
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.initial_weights = weights
super(FixedBatchNormalization, self).__init__(**kwargs)
def __init__(self,
kernel_size,
strides=(1, 1),
padding='valid',
depth_multiplier=1,
data_format=None,
activation=None,
use_bias=True,
depthwise_initializer='glorot_uniform',
bias_initializer='zeros',
depthwise_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
depthwise_constraint=None,
bias_constraint=None,
**kwargs):
super(DepthwiseConv2D, self).__init__(
filters=None,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
activation=activation,
use_bias=use_bias,
bias_regularizer=bias_regularizer,
activity_regularizer=activity_regularizer,
bias_constraint=bias_constraint,
**kwargs)
self.depth_multiplier = depth_multiplier
self.depthwise_initializer = initializers.get(depthwise_initializer)
self.depthwise_regularizer = regularizers.get(depthwise_regularizer)
self.depthwise_constraint = constraints.get(depthwise_constraint)
self.bias_initializer = initializers.get(bias_initializer)
def __init__(self, filters, kernel_size,
kernel_initializer='glorot_uniform', activation=None, weights=None,
padding='valid', strides=(1, 1), data_format=None,
kernel_regularizer=None, bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None, bias_constraint=None,
use_bias=True, **kwargs):
if data_format is None:
data_format = K.image_data_format()
if padding not in {'valid', 'same', 'full'}:
raise ValueError('Invalid border mode for CosineConvolution2D:', padding)
self.filters = filters
self.kernel_size = kernel_size
self.nb_row, self.nb_col = self.kernel_size
self.kernel_initializer = initializers.get(kernel_initializer)
self.activation = activations.get(activation)
self.padding = padding
self.strides = tuple(strides)
self.data_format = normalize_data_format(data_format)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.use_bias = use_bias
self.input_spec = [InputSpec(ndim=4)]
self.initial_weights = weights
super(CosineConvolution2D, self).__init__(**kwargs)
def __init__(self,
kernel_size,
strides=(1, 1),
padding='valid',
depth_multiplier=1,
data_format=None,
activation=None,
use_bias=True,
depthwise_initializer='glorot_uniform',
bias_initializer='zeros',
depthwise_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
depthwise_constraint=None,
bias_constraint=None,
**kwargs):
super(DepthwiseConv2D, self).__init__(
filters=None,
kernel_size=kernel_size,
strides=strides,
padding=padding,
data_format=data_format,
activation=activation,
use_bias=use_bias,
bias_regularizer=bias_regularizer,
activity_regularizer=activity_regularizer,
bias_constraint=bias_constraint,
**kwargs)
self.depth_multiplier = depth_multiplier
self.depthwise_initializer = initializers.get(depthwise_initializer)
self.depthwise_regularizer = regularizers.get(depthwise_regularizer)
self.depthwise_constraint = constraints.get(depthwise_constraint)
self.bias_initializer = initializers.get(bias_initializer)
self._padding = _preprocess_padding(self.padding)
self._strides = (1,) + self.strides + (1,)
self._data_format = "NHWC"
def __init__(self, units,
activation='linear',
weights=None,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
kernel_constraint=None,
bias_initializer='uniform',
bias_regularizer=None,
bias_constraint=None,
activity_regularizer=None,
bias=True,
input_dim=None,
factorization=simple_tensor_factorization(),
**kwargs):
self.activation = activations.get(activation)
self.units = units
self.input_dim = input_dim
self.factorization = factorization
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_initializer = get_initializer(kernel_initializer)
self.bias_initializer = get_initializer(bias_initializer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.bias = bias
self.initial_weights = weights
self.input_spec = [InputSpec(ndim=2)]
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(DenseTensor, self).__init__(**kwargs)
def __init__(self, filters_simple, filters_complex, nb_row, nb_col,
init='glorot_uniform', activation='relu', weights=None,
padding='valid', strides=(1, 1), data_format=K.image_data_format(),
kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
W_constraint=None, bias_constraint=None,
bias=True, **kwargs):
if padding not in {'valid', 'same'}:
raise Exception('Invalid border mode for Convolution2DEnergy:', padding)
self.filters_simple = filters_simple
self.filters_complex = filters_complex
self.nb_row = nb_row
self.nb_col = nb_col
self.init = initializers.get(init, data_format=data_format)
self.activation = activations.get(activation)
assert padding in {'valid', 'same'}, 'padding must be in {valid, same}'
self.padding = padding
self.strides = tuple(strides)
assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {tf, th}'
self.data_format = data_format
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.UnitNormOrthogonal(filters_complex, data_format)
self.bias_constraint = constraints.get(bias_constraint)
self.bias = bias
self.input_spec = [InputSpec(ndim=4)]
self.initial_weights = weights
super(Convolution2DEnergy, self).__init__(**kwargs)
def __init__(self, rank,
kernel_size=3,
data_format=None,
kernel_initialization=.1,
bias_initialization=1,
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):
super(_ConvGDN, self).__init__(**kwargs)
self.rank = rank
self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size')
self.strides = conv_utils.normalize_tuple(1, rank, 'strides')
self.padding = conv_utils.normalize_padding('same')
self.data_format = conv_utils.normalize_data_format(data_format)
self.dilation_rate = conv_utils.normalize_tuple(1, rank, 'dilation_rate')
self.kernel_initializer = initializers.Constant(kernel_initialization)
self.bias_initializer = initializers.Constant(bias_initialization)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.input_spec = InputSpec(ndim=self.rank + 2)
def __init__(self, filters,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
kernel_constraint=kconstraints.NonNeg(),
k_initializer='zeros',
k_regularizer=None,
k_constraint=None,
tied_k=False,
activity_regularizer=None,
strides=1,
padding='valid',
dilation_rate=1,
data_format=K.image_data_format(),
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(Conv2DSoftMinMax, self).__init__(**kwargs)
self.filters = filters
self.kernel_initializer = initializers.get(kernel_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.k_initializer = initializers.get(k_initializer)
self.k_regularizer = regularizers.get(k_regularizer)
self.k_constraint = constraints.get(k_constraint)
self.tied_k = tied_k
self.activity_regularizer = regularizers.get(activity_regularizer)
self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2, 'dilation_rate')
self.padding = conv_utils.normalize_padding(padding)
self.input_spec = InputSpec(min_ndim=2)
self.data_format = data_format
self.supports_masking = True
def __init__(self, init='one', power_init=1, weights=None, axis=-1, fit=True, **kwargs):
self.supports_masking = True
self.init = initializations.get(init)
self.initial_weights = weights
self.axis = axis
self.power_init = power_init
self.fit = fit
super(PowerReLU, self).__init__(**kwargs)
def __init__(self, quadratic_filters_ex=2, quadratic_filters_sup=2, W_quad_ex_initializer='glorot_uniform',
W_quad_sup_initializer='glorot_uniform', W_lin_initializer='glorot_uniform',
W_quad_ex_regularizer=None, W_quad_sup_regularizer=None, W_lin_regularizer=None,
W_quad_ex_constraint=None, W_quad_sup_constraint=None, W_lin_constraint=None,
**kwargs):
self.quadratic_filters_ex = quadratic_filters_ex
self.quadratic_filters_sup = quadratic_filters_sup
self.W_quad_ex_initializer = initializers.get(W_quad_ex_initializer)
self.W_quad_sup_initializer = initializers.get(W_quad_sup_initializer)
self.W_lin_initializer = initializers.get(W_lin_initializer)
self.W_quad_ex_constraint = constraints.get(W_quad_ex_constraint)
self.W_quad_sup_constraint = constraints.get(W_quad_sup_constraint)
self.W_lin_constraint = constraints.get(W_lin_constraint)
self.W_quad_ex_regularizer = regularizers.get(W_quad_ex_regularizer)
self.W_quad_sup_regularizer = regularizers.get(W_quad_sup_regularizer)
self.W_lin_regularizer = regularizers.get(W_lin_regularizer)
self.input_spec = [InputSpec(ndim=2)]
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(RustSTC, self).__init__(**kwargs)
def __init__(self, weights=None, kernel_initializer='glorot_uniform',
alpha_initializer='ones', alpha_regularizer=None, alpha_constraint=None,
beta_delta_initializer='ones', beta_delta_regularizer=None, beta_delta_constraint=None,
gamma_eta_initializer='ones', gamma_eta_regularizer=None, gamma_eta_constraint=None,
rho_initializer='ones', rho_regularizer=None, rho_constraint=None,
**kwargs):
self.alpha_initializer = initializers.get(alpha_initializer)
self.beta_delta_initializer = initializers.get(beta_delta_initializer)
self.gamma_eta_initializer = initializers.get(gamma_eta_initializer)
self.rho_initializer = initializers.get(rho_initializer)
self.alpha_constraint = constraints.get(alpha_constraint)
self.beta_delta_constraint = constraints.get(beta_delta_constraint)
self.gamma_eta_constraint = constraints.get(gamma_eta_constraint)
self.rho_constraint = constraints.get(rho_constraint)
self.alpha_regularizer = regularizers.get(alpha_regularizer)
self.beta_delta_regularizer = regularizers.get(beta_delta_regularizer)
self.gamma_eta_regularizer = regularizers.get(gamma_eta_regularizer)
self.rho_regularizer = regularizers.get(rho_regularizer)
self.input_spec = [InputSpec(ndim=2)]
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(NakaRushton, self).__init__(**kwargs)