def __init__(self,
W_regularizer=None, u_regularizer=None, b_regularizer=None,
W_constraint=None, u_constraint=None, b_constraint=None,
bias=True, **kwargs):
self.supports_masking = True
self.init = initializations.get('glorot_uniform')
self.W_regularizer = regularizers.get(W_regularizer)
self.u_regularizer = regularizers.get(u_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.u_constraint = constraints.get(u_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
super(AttentionWithContext, self).__init__(**kwargs)
python类get()的实例源码
def __init__(self, output_dim, init='glorot_uniform', activation='relu',weights=None,
W_regularizer=None, b_regularizer=None, activity_regularizer=None,
W_constraint=None, b_constraint=None, input_dim=None, **kwargs):
self.W_initializer = initializers.get(init)
self.b_initializer = initializers.get('zeros')
self.activation = activations.get(activation)
self.output_dim = output_dim
self.input_dim = input_dim
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.initial_weights = weights
self.input_spec = InputSpec(ndim=2)
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(SparseFullyConnectedLayer, self).__init__(**kwargs)
def __init__(self, epsilon=1e-3, mode=0, axis=-1, momentum=0.99,
r_max_value=3., d_max_value=5., t_delta=1., weights=None, beta_init='zero',
gamma_init='one', gamma_regularizer=None, beta_regularizer=None,
**kwargs):
self.supports_masking = True
self.beta_init = initializers.get(beta_init)
self.gamma_init = initializers.get(gamma_init)
self.epsilon = epsilon
self.mode = mode
self.axis = axis
self.momentum = momentum
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.initial_weights = weights
self.r_max_value = r_max_value
self.d_max_value = d_max_value
self.t_delta = t_delta
if self.mode == 0:
self.uses_learning_phase = True
super(BatchRenormalization, self).__init__(**kwargs)
itosfm.py 文件源码
项目:State-Frequency-Memory-stock-prediction
作者: z331565360
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def __init__(self, output_dim, freq_dim, hidden_dim,
init='glorot_uniform', inner_init='orthogonal',
forget_bias_init='one', activation='tanh',
inner_activation='hard_sigmoid',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.freq_dim = freq_dim
self.hidden_dim = hidden_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.forget_bias_init = initializations.get(forget_bias_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W, self.dropout_U = dropout_W, dropout_U
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(ITOSFM, self).__init__(**kwargs)
itosfm.py 文件源码
项目:State-Frequency-Memory-stock-prediction
作者: z331565360
项目源码
文件源码
阅读 75
收藏 0
点赞 0
评论 0
def __init__(self, output_dim, freq_dim, hidden_dim,
init='glorot_uniform', inner_init='orthogonal',
forget_bias_init='one', activation='tanh',
inner_activation='hard_sigmoid',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.freq_dim = freq_dim
self.hidden_dim = hidden_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.forget_bias_init = initializations.get(forget_bias_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W, self.dropout_U = dropout_W, dropout_U
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(ITOSFM, self).__init__(**kwargs)
def __init__(self, init='glorot_uniform',
U_regularizer=None, b_start_regularizer=None, b_end_regularizer=None,
U_constraint=None, b_start_constraint=None, b_end_constraint=None,
weights=None,
**kwargs):
self.supports_masking = True
self.uses_learning_phase = True
self.input_spec = [InputSpec(ndim=3)]
self.init = initializations.get(init)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_start_regularizer = regularizers.get(b_start_regularizer)
self.b_end_regularizer = regularizers.get(b_end_regularizer)
self.U_constraint = constraints.get(U_constraint)
self.b_start_constraint = constraints.get(b_start_constraint)
self.b_end_constraint = constraints.get(b_end_constraint)
self.initial_weights = weights
super(ChainCRF, self).__init__(**kwargs)
def __init__(self, output_dim, memory_dim=128, memory_size=20,
controller_output_dim=100, location_shift_range=1,
num_read_head=1, num_write_head=1,
init='glorot_uniform', inner_init='orthogonal',
forget_bias_init='one', activation='tanh',
inner_activation='hard_sigmoid',
W_regularizer=None, U_regularizer=None, R_regularizer=None,
b_regularizer=None, W_y_regularizer=None,
W_xi_regularizer=None, W_r_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.forget_bias_init = initializations.get(forget_bias_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W, self.dropout_U = dropout_W, dropout_U
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(NTM, self).__init__(**kwargs)
def __init__(self,
mask_shape,
layer_sizes,
scale,
bias=None,
act_reg=None,
**kwargs):
"""
"""
self.mask_shape = mask_shape
self.layer_sizes = layer_sizes
self.scale = scale
self.gen = generators.FFMatrixGen2D(output_shape=mask_shape,
layer_sizes=layer_sizes,
scale=scale)
self.bias = bias
self.act_reg = regularizers.get(act_reg)
super().__init__(**kwargs)
def __init__(self, alpha_initializer=0.2,
beta_initializer=5.0,
alpha_regularizer=None,
alpha_constraint=None,
beta_regularizer=None,
beta_constraint=None,
shared_axes=None,
**kwargs):
super(ParametricSoftplus, self).__init__(**kwargs)
self.supports_masking = True
self.alpha_initializer = initializers.get(alpha_initializer)
self.alpha_regularizer = regularizers.get(alpha_regularizer)
self.alpha_constraint = constraints.get(alpha_constraint)
self.beta_initializer = initializers.get(beta_initializer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.beta_constraint = constraints.get(beta_constraint)
if shared_axes is None:
self.shared_axes = None
elif not isinstance(shared_axes, (list, tuple)):
self.shared_axes = [shared_axes]
else:
self.shared_axes = list(shared_axes)
def __init__(self, filters,
centers_initializer='zeros',
centers_regularizer=None,
centers_constraint=None,
stds_initializer='ones',
stds_regularizer=None,
stds_constraint=None,
gauss_scale=100,
**kwargs):
self.filters = filters
self.gauss_scale = gauss_scale
super(GaussianReceptiveFields, self).__init__(**kwargs)
self.centers_initializer = initializers.get(centers_initializer)
self.stds_initializer = initializers.get(stds_initializer)
self.centers_regularizer = regularizers.get(centers_regularizer)
self.stds_regularizer = regularizers.get(stds_regularizer)
self.centers_constraint = constraints.get(centers_constraint)
self.stds_constraint = constraints.get(stds_constraint)
def __init__(self, quadratic_filters=2, init='glorot_uniform', weights=None,
W_quad_regularizer=None, W_lin_regularizer=None, activity_regularizer=None,
W_quad_constraint=None, W_lin_constraint=None,
bias=True, input_dim=None, **kwargs):
self.init = initializations.get(init)
self.quadratic_filters = quadratic_filters
self.input_dim = input_dim
self.W_quad_regularizer = regularizers.get(W_quad_regularizer)
self.W_lin_regularizer = regularizers.get(W_lin_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_quad_constraint = constraints.get(W_quad_constraint)
self.W_lin_constraint = constraints.get(W_lin_constraint)
self.initial_weights = weights
self.input_spec = [InputSpec(ndim=2)]
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(GQM, self).__init__(**kwargs)
def __init__(self, quadratic_filters=2, init='glorot_uniform', weights=None,
W_quad_regularizer=None, W_lin_regularizer=None, activity_regularizer=None,
W_quad_constraint=None, W_lin_constraint=None,
bias=True, input_dim=None, **kwargs):
self.init = initializations.get(init)
self.quadratic_filters = quadratic_filters
self.input_dim = input_dim
self.W_quad_regularizer = regularizers.get(W_quad_regularizer)
self.W_lin_regularizer = regularizers.get(W_lin_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_quad_constraint = constraints.get(W_quad_constraint)
self.W_lin_constraint = constraints.get(W_lin_constraint)
self.initial_weights = weights
self.input_spec = [InputSpec(ndim=5)]
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(GQM_conv, self).__init__(**kwargs)
def __init__(self, quadratic_filters=2, init='glorot_uniform', weights=None,
W_quad_regularizer=None, W_lin_regularizer=None, activity_regularizer=None,
W_quad_constraint=None, W_lin_constraint=None,
bias=True, input_dim=None, **kwargs):
self.init = initializations.get(init)
self.quadratic_filters = quadratic_filters
self.input_dim = input_dim
self.W_quad_regularizer = regularizers.get(W_quad_regularizer)
self.W_lin_regularizer = regularizers.get(W_lin_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_quad_constraint = constraints.get(W_quad_constraint)
self.W_lin_constraint = constraints.get(W_lin_constraint)
self.initial_weights = weights
self.input_spec = [InputSpec(ndim=5)]
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(GQM_4D, self).__init__(**kwargs)
def __init__(self, units,
kernel_initializer='glorot_uniform',
kernel_regularizer=None,
kernel_constraint=constraints.NonNeg(),
k_initializer='zeros',
k_regularizer=None,
k_constraint=None,
tied_k=False,
activity_regularizer=None,
**kwargs):
if 'input_shape' not in kwargs and 'input_dim' in kwargs:
kwargs['input_shape'] = (kwargs.pop('input_dim'),)
super(SoftMinMax, self).__init__(**kwargs)
self.units = units
self.kernel_initializer = initializers.get(kernel_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.k_initializer = initializers.get(k_initializer)
self.k_regularizer = regularizers.get(k_regularizer)
self.k_constraint = constraints.get(k_constraint)
self.tied_k = tied_k
self.activity_regularizer = regularizers.get(activity_regularizer)
self.input_spec = InputSpec(min_ndim=2)
self.supports_masking = True
def __init__(self, output_dim, init='glorot_uniform',
activation=None, weights=None,
W_regularizer=None, b_regularizer=None, activity_regularizer=None,
W_constraint=None, b_constraint=None,
bias=True, input_dim=None, **kwargs):
self.init = initializations.get(init)
self.activation = activations.get(activation)
self.output_dim = output_dim
self.input_dim = input_dim
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
self.initial_weights = weights
self.input_spec = [InputSpec(ndim='2+')]
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(DenseNonNeg, self).__init__(**kwargs)
def __init__(self, init='glorot_uniform',
activation=None, weights=None,
W_regularizer=None, b_regularizer=None, activity_regularizer=None,
W_constraint=None, b_constraint=None,
bias=True, input_dim=None, **kwargs):
self.init = initializations.get(init)
self.activation = activations.get(activation)
self.input_dim = input_dim
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
self.initial_weights = weights
self.input_spec = [InputSpec(ndim='2+')]
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(Feedback, self).__init__(**kwargs)
def __init__(self, init='glorot_uniform',
activation=None, weights=None,
W_regularizer=None, b_regularizer=None, activity_regularizer=None,
W_constraint=None, b_constraint=None,
bias=True, input_dim=None, **kwargs):
self.init = initializations.get(init)
self.activation = activations.get(activation)
self.input_dim = input_dim
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
self.initial_weights = weights
self.input_spec = [InputSpec(ndim='2+')]
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(DivisiveNormalization, self).__init__(**kwargs)
def __init__(self, init='glorot_uniform',
U_regularizer=None, b_start_regularizer=None, b_end_regularizer=None,
U_constraint=None, b_start_constraint=None, b_end_constraint=None,
weights=None,
**kwargs):
self.supports_masking = True
self.uses_learning_phase = True
self.input_spec = [InputSpec(ndim=3)]
self.init = initializations.get(init)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_start_regularizer = regularizers.get(b_start_regularizer)
self.b_end_regularizer = regularizers.get(b_end_regularizer)
self.U_constraint = constraints.get(U_constraint)
self.b_start_constraint = constraints.get(b_start_constraint)
self.b_end_constraint = constraints.get(b_end_constraint)
self.initial_weights = weights
super(ChainCRF, self).__init__(**kwargs)
def __init__(self, epsilon=1e-3, mode=0, axis=-1, momentum=0.99,
r_max_value=3., d_max_value=5., t_delta=1., weights=None, beta_init='zero',
gamma_init='one', gamma_regularizer=None, beta_regularizer=None,
**kwargs):
self.supports_masking = True
self.beta_init = initializers.get(beta_init)
self.gamma_init = initializers.get(gamma_init)
self.epsilon = epsilon
self.mode = mode
self.axis = axis
self.momentum = momentum
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.initial_weights = weights
self.r_max_value = r_max_value
self.d_max_value = d_max_value
self.t_delta = t_delta
if self.mode == 0:
self.uses_learning_phase = True
super(BatchRenormalization, self).__init__(**kwargs)
discrimination.py 文件源码
项目:Keras-GAN-Animeface-Character
作者: forcecore
项目源码
文件源码
阅读 19
收藏 0
点赞 0
评论 0
def __init__(self, nb_kernels, kernel_dim, init='glorot_uniform', weights=None,
W_regularizer=None, activity_regularizer=None,
W_constraint=None, input_dim=None, **kwargs):
self.init = initializers.get(init)
self.nb_kernels = nb_kernels
self.kernel_dim = kernel_dim
self.input_dim = input_dim
self.W_regularizer = regularizers.get(W_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.initial_weights = weights
self.input_spec = [InputSpec(ndim=2)]
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(MinibatchDiscrimination, self).__init__(**kwargs)
def __init__(self,output_dim,mem_vec_dim,init='glorot_uniform', activation='linear', weights=None,
activity_regularizer=None,input_dim=None, **kwargs):
'''
Params:
output_dim: ?????
mem_vec_dim: query?????
'''
self.init = initializations.get(init)
self.activation = activations.get(activation)
self.output_dim = output_dim
self.input_dim = input_dim
self.mem_vector_dim=mem_vec_dim
self.activity_regularizer = regularizers.get(activity_regularizer)
self.initial_weights = weights
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
super(MemoryNet,self).__init__(**kwargs)
def __init__(self, output_dim, L,
init='glorot_uniform', inner_init='orthogonal',
activation='tanh', inner_activation='hard_sigmoid',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W, self.dropout_U = dropout_W, dropout_U
self.L = L
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(RHN, self).__init__(**kwargs)
def __init__(self, input_dim, output_dim,
init='uniform', input_length=None,
W_regularizer=None, activity_regularizer=None,
W_constraint=None,
mask_zero=False,
weights=None, **kwargs):
self.input_dim = input_dim
self.output_dim = output_dim
self.init = initializations.get(init)
self.input_length = input_length
self.mask_zero = mask_zero
self.W_constraint = constraints.get(W_constraint)
self.constraints = [self.W_constraint]
self.W_regularizer = regularizers.get(W_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.initial_weights = weights
kwargs['input_shape'] = (self.input_dim,)
super(Embedding2D, self).__init__(**kwargs)
def __init__(self, input_dim, output_dim,
init='uniform', input_length=None,
W_regularizer=None, activity_regularizer=None,
W_constraint=None,
mask_zero=False,
weights=None, **kwargs):
self.input_dim = input_dim
self.output_dim = output_dim
self.init = initializations.get(init)
self.input_length = input_length
self.mask_zero = mask_zero
self.W_constraint = constraints.get(W_constraint)
self.constraints = [self.W_constraint]
self.W_regularizer = regularizers.get(W_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.initial_weights = weights
kwargs['input_shape'] = (self.input_dim,)
super(Embedding, self).__init__(**kwargs)
def __init__(self, init='glorot_uniform',
U_regularizer=None,
b_start_regularizer=None,
b_end_regularizer=None,
U_constraint=None,
b_start_constraint=None,
b_end_constraint=None,
weights=None,
**kwargs):
super(ChainCRF, self).__init__(**kwargs)
self.init = initializers.get(init)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_start_regularizer = regularizers.get(b_start_regularizer)
self.b_end_regularizer = regularizers.get(b_end_regularizer)
self.U_constraint = constraints.get(U_constraint)
self.b_start_constraint = constraints.get(b_start_constraint)
self.b_end_constraint = constraints.get(b_end_constraint)
self.initial_weights = weights
self.supports_masking = True
self.uses_learning_phase = True
self.input_spec = [InputSpec(ndim=3)]
def __init__(self, downsampling_factor=10, init='glorot_uniform', activation='linear',
weights=None, W_regularizer=None, activity_regularizer=None,
W_constraint=None, input_dim=None, **kwargs):
self.downsampling_factor = downsampling_factor
self.init = initializations.get(init)
self.activation = activations.get(activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.initial_weights = weights
self.input_dim = input_dim
if self.input_dim:
kwargs['input_shape'] = (self.input_dim,)
self.input_spec = [InputSpec(ndim=4)]
super(EltWiseProduct, self).__init__(**kwargs)
def __init__(self, nb_classes, frequency_table=None, mode=0, init='glorot_uniform', weights=None, W_regularizer=None, b_regularizer=None, activity_regularizer=None,
W_constraint=None, b_constraint=None,
bias=True, verbose=False, **kwargs):
'''
# Arguments:
nb_classes: Number of classes.
frequency_table: list. Frequency of each class. More frequent classes will have shorter huffman codes.
mode: integer. One of [0, 1]
verbose: boolean. Set to true to see the progress of building huffman tree.
'''
self.nb_classes = nb_classes
if frequency_table is None:
frequency_table = [1] * nb_classes
self.frequency_table = frequency_table
self.mode = mode
self.init = initializations.get(init)
self.W_regularizer = regularizers.get(W_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.activity_regularizer = regularizers.get(activity_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.b_constraint = constraints.get(b_constraint)
self.bias = bias
self.initial_weights = weights
self.verbose = verbose
super(Huffmax, self).__init__(**kwargs)
def __init__(self,
W_regularizer=None, u_regularizer=None, b_regularizer=None,
W_constraint=None, u_constraint=None, b_constraint=None,
W_dropout=0., u_dropout=0., bias=True, **kwargs):
self.supports_masking = True
self.W_init = initializers.get('orthogonal')
self.u_init = initializers.get('glorot_uniform')
self.W_regularizer = regularizers.get(W_regularizer)
self.u_regularizer = regularizers.get(u_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.W_constraint = constraints.get(W_constraint)
self.u_constraint = constraints.get(u_constraint)
self.b_constraint = constraints.get(b_constraint)
self.W_dropout = min(1., max(0., W_dropout))
self.u_dropout = min(1., max(0., u_dropout))
self.bias = bias
super(AttentionWithContext, self).__init__(**kwargs)
layer_normalization_RNN.py 文件源码
项目:New_Layers-Keras-Tensorflow
作者: WeidiXie
项目源码
文件源码
阅读 33
收藏 0
点赞 0
评论 0
def __init__(self, output_dim,
init='glorot_uniform', inner_init='orthogonal',
activation='tanh', beta_init='zero', gamma_init='one',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
gamma_regularizer=None, beta_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.activation = activations.get(activation)
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.beta_init = initializations.get(beta_init)
self.gamma_init = initializations.get(gamma_init)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.gamma_regularizer = regularizers.get(gamma_regularizer)
self.beta_regularizer = regularizers.get(beta_regularizer)
self.dropout_W = dropout_W
self.dropout_U = dropout_U
self.epsilon = 1e-5
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(LN_SimpleRNN, self).__init__(**kwargs)
def __init__(self, output_dim,
init='glorot_uniform', inner_init='orthogonal',
forget_bias_init='one', activation='tanh',
inner_activation='hard_sigmoid',
W_regularizer=None, U_regularizer=None, b_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.forget_bias_init = initializations.get(forget_bias_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W, self.dropout_U = dropout_W, dropout_U
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(DualCurrent, self).__init__(**kwargs)