python类Nadam()的实例源码

predict_2017_07_06_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_03_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    cname = sys._getframe().f_code.co_name
    def build_model(input_dims):
        from keras import layers
        from keras import models
        from keras import optimizers
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(1024, kernel_initializer='Orthogonal')(input_)
        model = layers.BatchNormalization()(model)
        model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.7)(model)
        model = layers.Dense(256, kernel_initializer='Orthogonal')(model)
        model = layers.BatchNormalization()(model)
        model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)
        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        model = layers.BatchNormalization()(model)
        model = layers.advanced_activations.PReLU()(model)
        model = layers.Dense(1, activation='sigmoid')(model)
        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy',
                      optimizer = optimizers.Nadam(),
                      #optimizer = optimizers.SGD(),
                      metrics = ['binary_accuracy'])
        #print(model.summary(line_length=120))
        return model
    keras_base(train2, y, test2, v, z, build_model, 9, cname, base_seed=42)

#@tf_force_cpu
predict_2017_07_03_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def keras_resnet1(train2, y, test2, v, z):
    cname = sys._getframe().f_code.co_name
    def build_model(input_dims):
        from keras import layers
        from keras import models
        from keras import optimizers
        input_ = layers.Input(shape=(input_dims,))
        resnet_dims = max(input_dims * 2, 128)
        model = layers.Dense(resnet_dims,
                             kernel_initializer='Orthogonal',
                             activation=layers.advanced_activations.PReLU())(input_)
        model = layers.BatchNormalization()(model)

        for n in range(20):
            shortcut = model
            model = layers.Dense(resnet_dims,
                                 kernel_initializer='Orthogonal')(model)
            model = layers.BatchNormalization()(model)
            model = layers.advanced_activations.PReLU()(model)
            model = layers.Dense(resnet_dims,
                                 kernel_initializer='Orthogonal')(model)
            model = layers.BatchNormalization()(model)
            model = layers.add([model, shortcut])
            model = layers.advanced_activations.PReLU()(model)

        #model = layers.Dropout(0.9)(model)
        model = layers.Dense(16,
                             kernel_initializer='Orthogonal',
                             activation=layers.advanced_activations.PReLU())(model)
        model = layers.BatchNormalization()(model)
        model = layers.Dense(1,
                             activation='sigmoid')(model)
        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy',
                      optimizer = optimizers.Nadam(),
                      #optimizer = optimizers.SGD(),
                      metrics = ['binary_accuracy'])
        #print(model.summary(line_length=120))
        return model
    keras_base(train2, y, test2, v, z, build_model, 9, cname, base_seed=42)
predict_2017_07_05_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_06_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_4.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_04_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
mf_qe_nn_clf.py 文件源码 项目:Kaggler 作者: qqgeogor 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def build_model(X,dim=128):

    inputs_p = Input(shape=(1,), dtype='int32')

    embed_p = Embedding(
                    num_q,
                    dim,
                    dropout=0.2,
                    input_length=1
                    )(inputs_p)

    inputs_d = Input(shape=(1,), dtype='int32')

    embed_d = Embedding(
                    num_e,
                    dim,
                    dropout=0.2,
                    input_length=1
                    )(inputs_d)


    flatten_p= Flatten()(embed_p)

    flatten_d= Flatten()(embed_d)

    flatten = merge([
                flatten_p,
                flatten_d,
                ],mode='concat')

    fc1 = Dense(512)(flatten)
    fc1 = SReLU()(fc1)
    dp1 = Dropout(0.7)(fc1)

    outputs = Dense(1,activation='sigmoid',name='outputs')(dp1)

    inputs = [
                inputs_p,
                inputs_d,
            ]



    model = Model(input=inputs, output=outputs)
    nadam = Nadam()
    sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(
                optimizer=nadam,
                loss= 'binary_crossentropy'
              )

    return model
Stock_Prediction_Model_Stateless_LSTM.py 文件源码 项目:StockRecommendSystem 作者: doncat99 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def lstm_model(self):
        model = Sequential()
        first = True
        for idx in range(len(self.paras.model['hidden_layers'])):
            if idx == (len(self.paras.model['hidden_layers']) - 1):
                model.add(LSTM(int(self.paras.model['hidden_layers'][idx]), return_sequences=False))
                model.add(Activation(self.paras.model['activation']))
                model.add(Dropout(self.paras.model['dropout']))
            elif first == True:
                model.add(LSTM(input_shape=(None, int(self.paras.n_features)),
                               units=int(self.paras.model['hidden_layers'][idx]),
                               return_sequences=True))
                model.add(Activation(self.paras.model['activation']))
                model.add(Dropout(self.paras.model['dropout']))
                first = False
            else:
                model.add(LSTM(int(self.paras.model['hidden_layers'][idx]), return_sequences=True))
                model.add(Activation(self.paras.model['activation']))
                model.add(Dropout(self.paras.model['dropout']))

        if self.paras.model['optimizer'] == 'sgd':
            #optimizer = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
            optimizer = optimizers.SGD(lr=self.paras.model['learning_rate'], decay=1e-6, momentum=0.9, nesterov=True)
        elif self.paras.model['optimizer'] == 'rmsprop':
            #optimizer = optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
            optimizer = optimizers.RMSprop(lr=self.paras.model['learning_rate']/10, rho=0.9, epsilon=1e-08, decay=0.0)
        elif self.paras.model['optimizer'] == 'adagrad':
            #optimizer = optimizers.Adagrad(lr=0.01, epsilon=1e-08, decay=0.0)
            optimizer = optimizers.Adagrad(lr=self.paras.model['learning_rate'], epsilon=1e-08, decay=0.0)
        elif self.paras.model['optimizer'] == 'adam':
            #optimizer = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
            optimizer = optimizers.Adam(lr=self.paras.model['learning_rate']/10, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
        elif self.paras.model['optimizer'] == 'adadelta':
            optimizer = optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0)
        elif self.paras.model['optimizer'] == 'adamax':
            optimizer = optimizers.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
        elif self.paras.model['optimizer'] == 'nadam':
            optimizer = optimizers.Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)
        else:
            optimizer = optimizers.Adam(lr=self.paras.model['learning_rate']/10, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)

        # output layer
        model.add(Dense(units=self.paras.model['out_layer']))
        model.add(Activation(self.paras.model['out_activation']))
        model.compile(loss=self.paras.model['loss'], optimizer=optimizer, metrics=['accuracy'])

        return model
NeuralNetRegressor.py 文件源码 项目:job-salary-prediction 作者: soton-data-mining 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def predict(self):

        def get_weights(model, layer_id):
            layer = model.layers[layer_id]
            weights = layer.get_weights()
            firstWeights = weights[1]
            print(firstWeights)

        def export_model(model, name):
            if not (os.path.exists("neural_net_models")):
                os.makedirs("neural_net_models")
            model_json = model.to_json()
            with open("neural_net_models/" + name + ".json", "w") as json_file:
                json_file.write(model_json)
            # serialize weights to HDF5
            model.save_weights("neural_net_models/" + name + ".h5")

        def import_model(model_name):
            json_file = open("neural_net_models/" + model_name + '.json', 'r')
            loaded_model_json = json_file.read()
            json_file.close()
            model = model_from_json(loaded_model_json)
            # load weights into new model
            model.load_weights("neural_net_models/" + model_name + ".h5")
            print("Loaded " + model_name + " from disk")
            return model

        model = import_model('ut_Dense100_L1_m5s3_L2_m1s03_lr07_d1e07')
        """
        model = Sequential()
        model.add(Dense(100, input_dim=85, activation='relu',
                        kernel_initializer=initializers.RandomNormal(
                                mean=5, stddev=3, seed=None)))
        model.add(Dense(1, activation='linear',
                        kernel_initializer=initializers.RandomNormal(
                                mean=1, stddev=0.3, seed=None)))
        """
        # rms = opt.RMSprop(lr=0.01, rho=0.9, epsilon=1e-08, decay =1e-9)
        adadelta = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0)
        # nadam = opt.Nadam(lr=0.05, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)
        model.compile(loss='mean_absolute_error', optimizer=adadelta, metrics=[metrics.mae])
        # optimizer='adam'
        model.fit(
                self.x_train, self.y_train,
                validation_data=(self.x_test, self.y_test),
                epochs=1000, batch_size=160000, verbose=1
        )

        export_model(model, 'ut_Dense100_L1_m5s3_L2_m1s03_lr07_d1e07')
        return (self.y_train, self.y_test)
noContextCNN.py 文件源码 项目:Question-Answering-NNs 作者: nbogdan 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, word_index, embedding_matrix):
        embedding_layer_q = Embedding(len(word_index) + 1,
                                    EMBEDDING_DIM,
                                    weights=[embedding_matrix],
                                    input_length=MAX_SEQUENCE_LENGTH_Q,
                                    trainable=False)
        embedding_layer_a = Embedding(len(word_index) + 1,
                                    EMBEDDING_DIM,
                                    weights=[embedding_matrix],
                                    input_length=MAX_SEQUENCE_LENGTH_A,
                                    trainable=False)

        question = Input(shape=(MAX_SEQUENCE_LENGTH_Q,), dtype='int32', name='question')
        answer = Input(shape=(MAX_SEQUENCE_LENGTH_A,), dtype='int32', name='answer')
        embedded_question = embedding_layer_q(question)
        embedded_answer = embedding_layer_a(answer)

        conv_blocksA = []
        conv_blocksQ = []
        for sz in [3,5]:
            conv = Convolution1D(filters=20,
                                 kernel_size=sz,
                                 padding="valid",
                                 activation="relu",
                                 strides=1)(embedded_answer)
            conv = MaxPooling1D(pool_size=2)(conv)
            conv = Flatten()(conv)
            conv_blocksA.append(conv)
        for sz in [5,7, 9]:
            conv = Convolution1D(filters=20,
                                 kernel_size=sz,
                                 padding="valid",
                                 activation="relu",
                                 strides=1)(embedded_question)
            conv = MaxPooling1D(pool_size=3)(conv)
            conv = Flatten()(conv)
            conv_blocksQ.append(conv)

        z = Concatenate()(conv_blocksA + conv_blocksQ)
        z = Dropout(0.5)(z)
        z = Dense(100, activation="relu")(z)
        softmax_c_q = Dense(2, activation='softmax')(z)
        self.model = Model([question, answer], softmax_c_q)
        opt = Nadam()
        self.model.compile(loss='categorical_crossentropy',
                      optimizer=opt,
                      metrics=['acc'])


问题


面经


文章

微信
公众号

扫码关注公众号