python类Nadam()的实例源码

cifar100_fractal.py 文件源码 项目:keras-fractalnet 作者: snf 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def build_network(deepest=False):
    dropout = [0., 0.1, 0.2, 0.3, 0.4]
    conv = [(64, 3, 3), (128, 3, 3), (256, 3, 3), (512, 3, 3), (512, 2, 2)]
    input= Input(shape=(3, 32, 32))
    output = fractal_net(
        c=3, b=5, conv=conv,
        drop_path=0.15, dropout=dropout,
        deepest=deepest)(input)
    output = Flatten()(output)
    output = Dense(NB_CLASSES, init='he_normal')(output)
    output = Activation('softmax')(output)
    model = Model(input=input, output=output)
    optimizer = SGD(lr=LEARN_START, momentum=MOMENTUM)
    #optimizer = RMSprop(lr=LEARN_START)
    #optimizer = Adam()
    #optimizer = Nadam()
    model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
    plot(model, to_file='model.png')
    return model
cifar10_fractal.py 文件源码 项目:keras-fractalnet 作者: snf 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_network(deepest=False):
    dropout = [0., 0.1, 0.2, 0.3, 0.4]
    conv = [(64, 3, 3), (128, 3, 3), (256, 3, 3), (512, 3, 3), (512, 2, 2)]
    input= Input(shape=(3, 32, 32) if K._BACKEND == 'theano' else (32, 32,3))
    output = fractal_net(
        c=3, b=5, conv=conv,
        drop_path=0.15, dropout=dropout,
        deepest=deepest)(input)
    output = Flatten()(output)
    output = Dense(NB_CLASSES, init='he_normal')(output)
    output = Activation('softmax')(output)
    model = Model(input=input, output=output)
    #optimizer = SGD(lr=LEARN_START, momentum=MOMENTUM)
    #optimizer = SGD(lr=LEARN_START, momentum=MOMENTUM, nesterov=True)
    optimizer = Adam()
    #optimizer = Nadam()
    model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
    plot(model, to_file='model.png', show_shapes=True)
    return model
gated_pixelcnn.py 文件源码 项目:eva 作者: israelg99 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def GatedPixelCNN(input_shape, filters, depth, latent=None, build=True):
    height, width, channels = input_shape
    palette = 256 # TODO: Make it scalable to any amount of palette.

    input_img = Input(shape=input_shape, name=str(channels)+'_channels_'+str(palette)+'_palette')

    latent_vector = None
    if latent is not None:
        latent_vector = Input(shape=(latent,), name='latent_vector')

    model = GatedCNNs(filters, depth, latent_vector)(*GatedCNN(filters, latent_vector)(input_img))

    for _ in range(2):
        model = Convolution2D(filters, 1, 1, border_mode='valid')(model)
        model = PReLU()(model)

    outs = OutChannels(*input_shape, masked=False, palette=palette)(model)

    if build:
        model = Model(input=[input_img, latent_vector] if latent is not None else input_img, output=outs)
        model.compile(optimizer=Nadam(), loss='binary_crossentropy' if channels == 1 else 'sparse_categorical_crossentropy')

    return model
pixelcnn.py 文件源码 项目:eva 作者: israelg99 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def PixelCNN(input_shape, filters, depth, build=True):
    height, width, channels = input_shape
    palette = 256 # TODO: Make it scalable to any amount of palette.

    input_img = Input(shape=input_shape, name=str(channels)+'_channels_'+str(palette)+'_palette')

    model = MaskedConvolution2D(filters, 7, 7, mask='A', border_mode='same', name='masked2d_A')(input_img)

    model = ResidualBlockList(filters, depth)(model)
    model = PReLU()(model)

    for _ in range(2):
        model = MaskedConvolution2D(filters, 1, 1, border_mode='valid')(model)
        model = PReLU()(model)

    outs = OutChannels(*input_shape, masked=True, palette=palette)(model)

    if build:
        model = Model(input=input_img, output=outs)
        model.compile(optimizer=Nadam(), loss='binary_crossentropy' if channels == 1 else 'sparse_categorical_crossentropy')

    return model
utils_models.py 文件源码 项目:auto_ml 作者: ClimbsRocks 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_optimizer(name='Adadelta'):
    if name == 'SGD':
        return optimizers.SGD(clipnorm=1.)
    if name == 'RMSprop':
        return optimizers.RMSprop(clipnorm=1.)
    if name == 'Adagrad':
        return optimizers.Adagrad(clipnorm=1.)
    if name == 'Adadelta':
        return optimizers.Adadelta(clipnorm=1.)
    if name == 'Adam':
        return optimizers.Adam(clipnorm=1.)
    if name == 'Adamax':
        return optimizers.Adamax(clipnorm=1.)
    if name == 'Nadam':
        return optimizers.Nadam(clipnorm=1.)

    return optimizers.Adam(clipnorm=1.)
viddesc_model.py 文件源码 项目:ABiViRNet 作者: lvapeab 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def setOptimizer(self, **kwargs):

        """
        Sets a new optimizer for the Translation_Model.
        :param **kwargs:
        """

        # compile differently depending if our model is 'Sequential' or 'Graph'
        if self.verbose > 0:
            logging.info("Preparing optimizer and compiling.")
        if self.params['OPTIMIZER'].lower() == 'adam':
            optimizer = Adam(lr=self.params['LR'], clipnorm=self.params['CLIP_C'])
        elif self.params['OPTIMIZER'].lower() == 'rmsprop':
            optimizer = RMSprop(lr=self.params['LR'], clipnorm=self.params['CLIP_C'])
        elif self.params['OPTIMIZER'].lower() == 'nadam':
            optimizer = Nadam(lr=self.params['LR'], clipnorm=self.params['CLIP_C'])
        elif self.params['OPTIMIZER'].lower() == 'adadelta':
            optimizer = Adadelta(lr=self.params['LR'], clipnorm=self.params['CLIP_C'])
        elif self.params['OPTIMIZER'].lower() == 'sgd':
            optimizer = SGD(lr=self.params['LR'], clipnorm=self.params['CLIP_C'])
        else:
            logging.info('\tWARNING: The modification of the LR is not implemented for the chosen optimizer.')
            optimizer = eval(self.params['OPTIMIZER'])
        self.model.compile(optimizer=optimizer, loss=self.params['LOSS'],
                           sample_weight_mode='temporal' if self.params['SAMPLE_WEIGHTS'] else None)
model.py 文件源码 项目:Deep-Learning-para-diagnostico-a-partir-de-imagenes-Biomedicas 作者: pacocp 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def create_model_RES():

    inp = Input((110, 110, 3))
    cnv1 = Conv2D(64, 3, 3, subsample=[2,2], activation='relu', border_mode='same')(inp)
    r1 = Residual(64, 64, cnv1)
    # An example residual unit coming after a convolutional layer. NOTE: the above residual takes the 64 output channels
    # from the Convolutional2D layer as the first argument to the Residual function
    r2 = Residual(64, 64, r1)
    cnv2 = Conv2D(64, 3, 3, activation='relu', border_mode='same')(r2)
    r3 = Residual(64, 64, cnv2)
    r4 = Residual(64, 64, r3)
    cnv3 = Conv2D(128, 3, 3, activation='relu', border_mode='same')(r4)
    r5 = Residual(128, 128, cnv3)
    r6 = Residual(128, 128, r5)
    maxpool = MaxPooling2D(pool_size=(7, 7))(r6)
    flatten = Flatten()(maxpool)
    dense1 = Dense(128, activation='relu')(flatten)
    out = Dense(2, activation='softmax')(dense1)

    model = Model(input=inp, output=out)
    model.compile(loss='categorical_crossentropy',
    optimizer=Nadam(lr=1e-4), metrics=['accuracy'])

    return model
test_optimizers.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_nadam():
    _test_optimizer(Nadam())
wavenet.py 文件源码 项目:eva 作者: israelg99 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def Wavenet(input_shape, filters, depth, stacks, last=0, h=None, build=True):
    # TODO: Soft targets? A float to make targets a gaussian with stdev.
    # TODO: Train only receptive field. The temporal-first outputs are computed from zero-padding.
    # TODO: Global conditioning?
    # TODO: Local conditioning?

    _, nb_bins = input_shape

    input_audio = Input(input_shape, name='audio_input')

    model = CausalAtrousConvolution1D(filters, 2, mask_type='A', atrous_rate=1, border_mode='valid')(input_audio)

    out, skip_connections = WavenetBlocks(filters, depth, stacks)(model)

    out = Merge(mode='sum', name='merging_skips')(skip_connections)
    out = PReLU()(out)

    out = Convolution1D(nb_bins, 1, border_mode='same')(out)
    out = PReLU()(out)

    out = Convolution1D(nb_bins, 1, border_mode='same')(out)

    # https://storage.googleapis.com/deepmind-live-cms/documents/BlogPost-Fig2-Anim-160908-r01.gif
    if last > 0:
        out = Lambda(lambda x: x[:, -last:], output_shape=(last, out._keras_shape[2]), name='last_out')(out)

    out = Activation('softmax')(out)

    if build:
        model = Model(input_audio, out)
        model.compile(Nadam(), 'sparse_categorical_crossentropy')

    return model
mlp_classifier.py 文件源码 项目:main 作者: rmkemker 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, hidden_layer_shape = [64], weight_decay=1e-4,
                 batch_normalization=True, activation='relu', save_fname=None,
                 patience = 6, lr=2e-3, min_lr = 2e-6, verbose = 2, mu=None,
                 refit = False, gpu_list = None, optimizer=None, nb_epochs=1000,
                 kernel_initializer = 'glorot_normal', lr_patience = 3):

        self.model = Sequential()
        self.hidden = hidden_layer_shape
        self.wd = weight_decay
        self.bn = batch_normalization
        self.activation = activation
        self.fname = save_fname
        self.patience = patience
        self.lr = lr
        self.min_lr = min_lr
        self.verbose = verbose
        self.mu = mu
        self.epochs = nb_epochs
        self.refit = refit
        self.gpus = gpu_list
        self.ki = kernel_initializer
        self.lr_patience = lr_patience

        if optimizer is None:
            self.opt = Nadam(self.lr)

        if self.refit:
            raise NotImplementedError('I have not implemented the refit functionality yet.')
test_optimizers.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_nadam():
    _test_optimizer(Nadam())
neural.py 文件源码 项目:neural-decoder 作者: Krastanov 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def create_model(L, hidden_sizes=[4], hidden_act='tanh', act='sigmoid', loss='binary_crossentropy',
                 Z=True, X=False, learning_rate=0.002,
                 normcentererr_p=None, batchnorm=0):
    in_dim = L**2 * (X+Z)
    out_dim = 2*L**2 * (X+Z)
    model = Sequential()
    model.add(Dense(int(hidden_sizes[0]*out_dim), input_dim=in_dim, kernel_initializer='glorot_uniform'))
    if batchnorm:
        model.add(BatchNormalization(momentum=batchnorm))
    model.add(Activation(hidden_act))
    for s in hidden_sizes[1:]:
        model.add(Dense(int(s*out_dim), kernel_initializer='glorot_uniform'))
        if batchnorm:
            model.add(BatchNormalization(momentum=batchnorm))
        model.add(Activation(hidden_act))
    model.add(Dense(out_dim, kernel_initializer='glorot_uniform'))
    if batchnorm:
        model.add(BatchNormalization(momentum=batchnorm))
    model.add(Activation(act))
    c = CodeCosts(L, ToricCode, Z, X, normcentererr_p)
    losses = {'e_binary_crossentropy':c.e_binary_crossentropy,
              's_binary_crossentropy':c.s_binary_crossentropy,
              'se_binary_crossentropy':c.se_binary_crossentropy}
    model.compile(loss=losses.get(loss,loss),
                  optimizer=Nadam(lr=learning_rate),
                  metrics=[c.triv_no_error, c.e_binary_crossentropy, c.s_binary_crossentropy]
                 )
    return model
test_optimizers.py 文件源码 项目:keras 作者: NVIDIA 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_nadam():
    _test_optimizer(Nadam())
simpleLSTM.py 文件源码 项目:Question-Answering-NNs 作者: nbogdan 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, word_index, embedding_matrix):
        embedding_layer_c = Embedding(len(word_index) + 1,
                                    EMBEDDING_DIM,
                                    weights=[embedding_matrix],
                                    input_length=MAX_SEQUENCE_LENGTH_C,
                                    trainable=False)
        embedding_layer_q = Embedding(len(word_index) + 1,
                                      EMBEDDING_DIM,
                                      weights=[embedding_matrix],
                                      input_length=MAX_SEQUENCE_LENGTH_Q,
                                      trainable=False)
        embedding_layer_a = Embedding(len(word_index) + 1,
                                      EMBEDDING_DIM,
                                      weights=[embedding_matrix],
                                      input_length=MAX_SEQUENCE_LENGTH_A,
                                      trainable=False)
        context = Input(shape=(MAX_SEQUENCE_LENGTH_C,), dtype='int32', name='context')
        question = Input(shape=(MAX_SEQUENCE_LENGTH_Q,), dtype='int32', name='question')
        answer = Input(shape=(MAX_SEQUENCE_LENGTH_A,), dtype='int32', name='answer')
        embedded_context = embedding_layer_c(context)
        embedded_question = embedding_layer_q(question)
        embedded_answer = embedding_layer_a(answer)

        l_lstm_c = Bidirectional(LSTM(60))(embedded_context)
        l_lstm_q = Bidirectional(LSTM(60))(embedded_question)
        l_lstm_a = Bidirectional(LSTM(60))(embedded_answer)

        concat_c_q = concatenate([l_lstm_q, l_lstm_c], axis=1)
        relu_c_q = Dense(100, activation='relu')(concat_c_q)
        relu_c_q = Dropout(0.25)(relu_c_q)
        concat_c_q_a = concatenate([l_lstm_a, relu_c_q], axis = 1)

        softmax_c_q_a = Dense(2, activation='softmax')(concat_c_q_a)
        self.model = Model([question, answer, context], softmax_c_q_a)
        opt = Nadam()
        self.model.compile(loss='categorical_crossentropy',
                      optimizer=opt,
                      metrics=['acc'])
layeredLSTM.py 文件源码 项目:Question-Answering-NNs 作者: nbogdan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, word_index, embedding_matrix):
        embedding_layer_c = Embedding(len(word_index) + 1,
                                    EMBEDDING_DIM,
                                    weights=[embedding_matrix],
                                    input_length=MAX_SEQUENCE_LENGTH_C,
                                    trainable=False)
        embedding_layer_q = Embedding(len(word_index) + 1,
                                      EMBEDDING_DIM,
                                      weights=[embedding_matrix],
                                      input_length=MAX_SEQUENCE_LENGTH_Q,
                                      trainable=False)
        embedding_layer_a = Embedding(len(word_index) + 1,
                                      EMBEDDING_DIM,
                                      weights=[embedding_matrix],
                                      input_length=MAX_SEQUENCE_LENGTH_A,
                                      trainable=False)
        context = Input(shape=(MAX_SEQUENCE_LENGTH_C,), dtype='int32', name='context')
        question = Input(shape=(MAX_SEQUENCE_LENGTH_Q,), dtype='int32', name='question')
        answer = Input(shape=(MAX_SEQUENCE_LENGTH_A,), dtype='int32', name='answer')
        embedded_context = embedding_layer_c(context)
        embedded_question = embedding_layer_q(question)
        embedded_answer = embedding_layer_a(answer)

        l_lstm_c = Bidirectional(LSTM(60, return_sequences=True))(embedded_context)
        l_lstm_c = Bidirectional(LSTM(60))(l_lstm_c)
        l_lstm_q = Bidirectional(LSTM(60))(embedded_question)
        l_lstm_a = Bidirectional(LSTM(60))(embedded_answer)

        concat_c_q = concatenate([l_lstm_q, l_lstm_c], axis=1)
        relu_c_q = Dense(100, activation='relu')(concat_c_q)
        relu_c_q = Dropout(0.25)(relu_c_q)
        concat_c_q_a = concatenate([l_lstm_a, relu_c_q], axis = 1)

        softmax_c_q_a = Dense(2, activation='softmax')(concat_c_q_a)
        self.model = Model([question, answer, context], softmax_c_q_a)
        opt = Nadam()
        self.model.compile(loss='categorical_crossentropy',
                      optimizer=opt,
                      metrics=['acc'])
noContextLSTM.py 文件源码 项目:Question-Answering-NNs 作者: nbogdan 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, word_index, embedding_matrix):
        embedding_layer_q = Embedding(len(word_index) + 1,
                                      EMBEDDING_DIM,
                                      weights=[embedding_matrix],
                                      input_length=MAX_SEQUENCE_LENGTH_Q,
                                      trainable=False)
        embedding_layer_a = Embedding(len(word_index) + 1,
                                      EMBEDDING_DIM,
                                      weights=[embedding_matrix],
                                      input_length=MAX_SEQUENCE_LENGTH_A,
                                      trainable=False)
        question = Input(shape=(MAX_SEQUENCE_LENGTH_Q,), dtype='int32', name='question')
        answer = Input(shape=(MAX_SEQUENCE_LENGTH_A,), dtype='int32', name='answer')
        embedded_question = embedding_layer_q(question)
        embedded_answer = embedding_layer_a(answer)

        l_lstm_q = Bidirectional(LSTM(60))(embedded_question)
        l_lstm_a = Bidirectional(LSTM(60))(embedded_answer)

        concat_c_q_a = concatenate([l_lstm_a, l_lstm_q], axis = 1)

        softmax_c_q_a = Dense(2, activation='softmax')(concat_c_q_a)
        self.model = Model([question, answer], softmax_c_q_a)
        opt = Nadam()
        self.model.compile(loss='categorical_crossentropy',
                      optimizer=opt,
                      metrics=['acc'])
cosLSTM.py 文件源码 项目:Question-Answering-NNs 作者: nbogdan 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, word_index, embedding_matrix):
        embedding_layer_c = Embedding(len(word_index) + 1,
                                    EMBEDDING_DIM,
                                    weights=[embedding_matrix],
                                    input_length=MAX_SEQUENCE_LENGTH_C,
                                    trainable=False)
        embedding_layer_q = Embedding(len(word_index) + 1,
                                      EMBEDDING_DIM,
                                      weights=[embedding_matrix],
                                      input_length=MAX_SEQUENCE_LENGTH_Q,
                                      trainable=False)
        embedding_layer_a = Embedding(len(word_index) + 1,
                                      EMBEDDING_DIM,
                                      weights=[embedding_matrix],
                                      input_length=MAX_SEQUENCE_LENGTH_A,
                                      trainable=False)
        context = Input(shape=(MAX_SEQUENCE_LENGTH_C,), dtype='int32', name='context')
        question = Input(shape=(MAX_SEQUENCE_LENGTH_Q,), dtype='int32', name='question')
        answer = Input(shape=(MAX_SEQUENCE_LENGTH_A,), dtype='int32', name='answer')
        embedded_context = embedding_layer_c(context)
        embedded_question = embedding_layer_q(question)
        embedded_answer = embedding_layer_a(answer)

        l_lstm_c = Bidirectional(LSTM(60))(embedded_context)
        l_lstm_q = Bidirectional(LSTM(60))(embedded_question)
        l_lstm_a = Bidirectional(LSTM(60))(embedded_answer)

        concat_c_q = concatenate([l_lstm_q, l_lstm_c], axis=1)
        relu_c_q = Dense(100, activation='tanh')(concat_c_q)
        concat_c_a = concatenate([l_lstm_a, l_lstm_c], axis=1)
        relu_c_a = Dense(100, activation='tanh')(concat_c_a)
        relu_c_q = Dropout(0.5)(relu_c_q)
        relu_c_a = Dropout(0.5)(relu_c_a)
        concat_c_q_a = merge([relu_c_a, relu_c_q], mode='cos')
        softmax_c_q_a = Dense(2, activation='softmax')(concat_c_q_a)
        self.model = Model([question, answer, context], softmax_c_q_a)
        opt = Nadam()
        self.model.compile(loss='categorical_crossentropy',
                      optimizer=opt,
                      metrics=['acc'])
stack_mlp_level2.py 文件源码 项目:kaggle-quora-solution-8th 作者: qqgeogor 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def MLP(opt='nadam'):

    X_raw=Input(shape=(LEN_RAW_INPUT,),name='input_raw')

    fc1=BatchNormalization()(X_raw)
    fc1=Dense(256)(fc1)
    fc1=PReLU()(fc1)
    fc1=Dropout(0.2)(fc1)

    fc1=BatchNormalization()(fc1)
    fc1=Dense(256)(fc1)
    fc1=PReLU()(fc1)
    #fc1=Dropout(0.2)(fc1)

    fc1=BatchNormalization()(fc1)
    auxiliary_output_dense = Dense(1, activation='sigmoid', name='aux_output_dense')(fc1)


    output_all = Dense(1,activation='sigmoid',name='output')(fc1)
    model=Model(input=X_raw,output=output_all)
    model.compile(
                optimizer=opt,
                loss = 'binary_crossentropy')
    return model


#nadam=Nadam(lr=0.000)
l1_7_keras_4.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def build_keras_model(self):
        input_ = layers.Input(shape=(self.input_dims_,))
        #model = layers.noise.GaussianNoise(0.005)(input_)
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.2)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.4)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
model_base_keras.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def build_keras_model(self):
        ''' #example:
        from keras import layers
        from keras import models
        from keras import optimizers
        input_ = layers.Input(shape=(self.input_dims_,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.2, seed=1)(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.4)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.4)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
        '''
        raise Exception('implement this!')

    #@tf_force_cpu
l1_7_keras_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def build_keras_model(self):
        input_ = layers.Input(shape=(self.input_dims_,))
        #model = layers.noise.GaussianNoise(0.005)(input_)
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.2)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.4)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
l1_6_keras_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def build_keras_model(self):
        input_ = layers.Input(shape=(self.input_dims_,))
        #model = layers.noise.GaussianNoise(0.005)(input_)
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.2)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.4)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
l1_7_keras_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def build_keras_model(self):
        input_ = layers.Input(shape=(self.input_dims_,))
        #model = layers.noise.GaussianNoise(0.005)(input_)
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.2)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.4)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
l1_7_keras_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def build_keras_model(self):
        input_ = layers.Input(shape=(self.input_dims_,))
        #model = layers.noise.GaussianNoise(0.005)(input_)
        model = layers.Dense(512, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.2)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.4)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
l1_6_keras_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def build_keras_model(self):
        input_ = layers.Input(shape=(self.input_dims_,))
        #model = layers.noise.GaussianNoise(0.005)(input_)
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.2)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.4)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
l1_5_keras_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def build_keras_model(self):
        input_ = layers.Input(shape=(self.input_dims_,))
        model = layers.noise.GaussianNoise(0.005)(input_)
        model = layers.Dense(1024, kernel_initializer='Orthogonal')(model)
        #model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        model = layers.BatchNormalization()(model)
        model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.2)(model)

        model = layers.Dense(512, kernel_initializer='Orthogonal')(model)
        #model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        model = layers.BatchNormalization()(model)
        model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.4)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        model = layers.BatchNormalization()(model)
        model = layers.advanced_activations.PReLU()(model)
        #model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
l1_6_keras_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def build_keras_model(self):
        input_ = layers.Input(shape=(self.input_dims_,))
        #model = layers.noise.GaussianNoise(0.005)(input_)
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.2)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.4)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
l1_6_keras_4.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 61 收藏 0 点赞 0 评论 0
def build_keras_model(self):
        input_ = layers.Input(shape=(self.input_dims_,))
        #model = layers.noise.GaussianNoise(0.005)(input_)
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.2)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        model = layers.Activation('selu')(model)
        #model = layers.noise.AlphaDropout(0.1, seed=1)(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.4)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
predict_2017_07_06_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)
predict_2017_07_05_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def keras_mlp1(train2, y, test2, v, z):
    from keras import layers
    from keras import models
    from keras import optimizers
    cname = sys._getframe().f_code.co_name
    num_splits = 9
    scaler = preprocessing.RobustScaler()
    train3 = scaler.fit_transform(train2)
    test3 = scaler.transform(test2)
    input_dims = train3.shape[1]
    def build_model():
        input_ = layers.Input(shape=(input_dims,))
        model = layers.Dense(256, kernel_initializer='Orthogonal')(input_)
        #model = layers.BatchNormalization()(model)
        #model = layers.advanced_activations.PReLU()(model)
        model = layers.Activation('selu')(model)
        #model = layers.Dropout(0.7)(model)

        model = layers.Dense(64, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)
        #model = layers.Dropout(0.9)(model)

        model = layers.Dense(16, kernel_initializer='Orthogonal')(model)
        #model = layers.BatchNormalization()(model)
        model = layers.Activation('selu')(model)
        #model = layers.advanced_activations.PReLU()(model)

        model = layers.Dense(1, activation='sigmoid')(model)

        model = models.Model(input_, model)
        model.compile(loss = 'binary_crossentropy', optimizer = optimizers.Nadam())
        #print(model.summary(line_length=120))
        return model
    keras_common(train3, y, test3, v, z, num_splits, cname, build_model)


问题


面经


文章

微信
公众号

扫码关注公众号