python类Adadelta()的实例源码

ResNet.py 文件源码 项目:Papers2Code 作者: rainer85ah 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def compile(self, optimizer='sgd'):

        optimizer_dicc = {'sgd': optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True),
                          'rmsprop': optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0),
                          'adagrad': optimizers.Adagrad(lr=0.01, epsilon=1e-08, decay=0.0),
                          'adadelta': optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0),
                          'adam': optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)}

        model.compile(optimizer=optimizer_dicc[optimizer], loss='categorical_crossentropy', metrics=['accuracy'])
        return model
GoogLeNet.py 文件源码 项目:Papers2Code 作者: rainer85ah 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def compile(self, optimizer='sgd'):

        optimizer_dicc = {'sgd': optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True),
                          'rmsprop': optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0),
                          'adagrad': optimizers.Adagrad(lr=0.01, epsilon=1e-08, decay=0.0),
                          'adadelta': optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0),
                          'adam': optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)}

        self.model.compile(optimizer=optimizer_dicc[optimizer], loss='categorical_crossentropy', metrics=['accuracy'])
        return self.model
ZFNet.py 文件源码 项目:Papers2Code 作者: rainer85ah 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def compile(self, optimizer='sgd'):

        optimizer_dicc = {'sgd': optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True),
                          'rmsprop': optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0),
                          'adagrad': optimizers.Adagrad(lr=0.01, epsilon=1e-08, decay=0.0),
                          'adadelta': optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0),
                          'adam': optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)}

        self.model.compile(optimizer=optimizer_dicc[optimizer], loss='categorical_crossentropy', metrics=['accuracy'])
        return self.model
DarkNet.py 文件源码 项目:Papers2Code 作者: rainer85ah 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def compile(self, optimizer='sgd'):

        optimizer_dicc = {'sgd': optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True),
                          'rmsprop': optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0),
                          'adagrad': optimizers.Adagrad(lr=0.01, epsilon=1e-08, decay=0.0),
                          'adadelta': optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0),
                          'adam': optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)}

        self.model.compile(optimizer=optimizer_dicc[optimizer], loss='categorical_crossentropy', metrics=['accuracy'])
        return self.model
VGG.py 文件源码 项目:Papers2Code 作者: rainer85ah 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def compile(self, optimizer='sgd'):

        optimizer_dicc = {'sgd': optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True),
                          'rmsprop': optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0),
                          'adagrad': optimizers.Adagrad(lr=0.01, epsilon=1e-08, decay=0.0),
                          'adadelta': optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0),
                          'adam': optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)}

        self.model.compile(optimizer=optimizer_dicc[optimizer], loss='categorical_crossentropy', metrics=['accuracy'])
        return self.model
ImageNet.py 文件源码 项目:Papers2Code 作者: rainer85ah 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def compile(self, optimizer='sgd'):

        optimizer_dicc = {'sgd': optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True),
                          'rmsprop': optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0),
                          'adagrad': optimizers.Adagrad(lr=0.01, epsilon=1e-08, decay=0.0),
                          'adadelta': optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0),
                          'adam': optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)}

        self.model.compile(optimizer=optimizer_dicc[optimizer], loss='categorical_crossentropy', metrics=['accuracy'])
        return self.model
test_optimizers.py 文件源码 项目:deep-coref 作者: clarkkev 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def test_adadelta(self):
        print('test Adadelta')
        self.assertTrue(_test_optimizer(Adadelta()))
one_to_one.py 文件源码 项目:semantic_selector 作者: toshiya 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __construct_neural_network(self):
        model = Sequential()
        model.add(Dense(400,
                        activation='relu',
                        input_shape=(len(self.dictionary.keys()),)))
        model.add(Dropout(0.5))
        model.add(Dense(100, activation='relu'))
        model.add(Dropout(0.5))
        model.add(Dense(len(self.all_topics), activation='softmax'))
        model.compile(loss=categorical_crossentropy,
                      optimizer=Adadelta(),
                      metrics=['accuracy'])
        return model
model_keras.py 文件源码 项目:kaggle-prudential-sample 作者: threecourse 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def _construct(self, inputShape):
        init = 'glorot_normal'
        activation = 'relu'
        loss = 'mse'  
        print "loss", loss

        layers = [self.prms["h1"], self.prms["h2"]]
        dropout = [self.prms["dropout1"], self.prms["dropout2"]]
        optimizer = Adadelta(lr=self.prms["adadelta_lr"], rho=(1.0 - self.prms["adadelta_rho_m"]),
                             epsilon=self.prms["adadelta_eps"])
        decay = self.prms["decay"]

        model = Sequential()
        for i in range(len(layers)):
            if i == 0:
                print ("Input shape: " + str(inputShape))
                print ("Adding Layer " + str(i) + ": " + str(layers[i]))
                model.add(Dense(layers[i], input_dim=inputShape, init=init, W_regularizer=l2(decay)))
            else:
                print ("Adding Layer " + str(i) + ": " + str(layers[i]))
                model.add(Dense(layers[i], init=init, W_regularizer=l2(decay)))
            print ("Adding " + activation + " layer")
            model.add(Activation(activation))
            model.add(BatchNormalization())
            if len(dropout) > i:
                print ("Adding " + str(dropout[i]) + " dropout")
                model.add(Dropout(dropout[i]))
        model.add(Dense(1, init=init))  # End in a single output node for regression style output
        # ADAM=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
        model.compile(loss=loss, optimizer=optimizer)

        self.model = model
sst2_cnn_rnn_kera1.py 文件源码 项目:crnn 作者: ultimate010 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def build_model():
    main_input = Input(shape=(maxlen, ), dtype='int32', name='main_input')
    embedding  = Embedding(max_features, embedding_dims,
                  weights=[np.matrix(W)], input_length=maxlen,
                  name='embedding')(main_input)

    embedding = Dropout(0.50)(embedding)

    conv4 = Convolution1D(nb_filter=nb_filter,
                          filter_length=4,
                          border_mode='valid',
                          activation='relu',
                          subsample_length=1,
                          name='conv4')(embedding)
    maxConv4 = MaxPooling1D(pool_length=2,
                             name='maxConv4')(conv4)

    conv5 = Convolution1D(nb_filter=nb_filter,
                          filter_length=5,
                          border_mode='valid',
                          activation='relu',
                          subsample_length=1,
                          name='conv5')(embedding)
    maxConv5 = MaxPooling1D(pool_length=2,
                            name='maxConv5')(conv5)

    x = merge([maxConv4, maxConv5], mode='concat')

    x = Dropout(0.15)(x)

    x = RNN(rnn_output_size)(x)

    x = Dense(hidden_dims, activation='relu', init='he_normal',
              W_constraint = maxnorm(3), b_constraint=maxnorm(3),
              name='mlp')(x)

    x = Dropout(0.10, name='drop')(x)

    output = Dense(1, init='he_normal',
                   activation='sigmoid', name='output')(x)

    model = Model(input=main_input, output=output)
    model.compile(loss={'output':'binary_crossentropy'},
                optimizer=Adadelta(lr=0.95, epsilon=1e-06),
                metrics=["accuracy"])
    return model
sst2_cnn_rnn.py 文件源码 项目:crnn 作者: ultimate010 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def build_model():
    main_input = Input(shape=(maxlen, ), dtype='int32', name='main_input')
    embedding  = Embedding(max_features, embedding_dims,
                  weights=[np.matrix(W)], input_length=maxlen,
                  name='embedding')(main_input)

    embedding = Dropout(0.50)(embedding)

    conv4 = Conv1D(filters=nb_filter,
                          kernel_size=4,
                          padding='valid',
                          activation='relu',
                          strides=1,
                          name='conv4')(embedding)
    maxConv4 = MaxPooling1D(pool_size=2,
                             name='maxConv4')(conv4)

    conv5 = Conv1D(filters=nb_filter,
                          kernel_size=5,
                          padding='valid',
                          activation='relu',
                          strides=1,
                          name='conv5')(embedding)
    maxConv5 = MaxPooling1D(pool_size=2,
                            name='maxConv5')(conv5)

    # x = merge([maxConv4, maxConv5], mode='concat')
    x = keras.layers.concatenate([maxConv4, maxConv5])

    x = Dropout(0.15)(x)

    x = RNN(rnn_output_size)(x)

    x = Dense(hidden_dims, activation='relu', kernel_initializer='he_normal',
              kernel_constraint = maxnorm(3), bias_constraint=maxnorm(3),
              name='mlp')(x)

    x = Dropout(0.10, name='drop')(x)

    output = Dense(1, kernel_initializer='he_normal',
                   activation='sigmoid', name='output')(x)

    model = Model(inputs=main_input, outputs=output)
    model.compile(loss='binary_crossentropy',
                # optimizer=Adadelta(lr=0.95, epsilon=1e-06),
                # optimizer=Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0),
                # optimizer=Adagrad(lr=0.01, epsilon=1e-08, decay=1e-4),
                metrics=["accuracy"])
    return model
mr_cnn_rnn.py 文件源码 项目:crnn 作者: ultimate010 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def build_model():
        print('Build model...%d of %d' % (i + 1, folds))
        main_input = Input(shape=(maxlen, ), dtype='int32', name='main_input')
        embedding  = Embedding(max_features, embedding_dims,
                      weights=[np.matrix(W)], input_length=maxlen,
                      name='embedding')(main_input)

        embedding = Dropout(0.50)(embedding)


        conv4 = Convolution1D(nb_filter=nb_filter,
                              filter_length=4,
                              border_mode='valid',
                              activation='relu',
                              subsample_length=1,
                              name='conv4')(embedding)
        maxConv4 = MaxPooling1D(pool_length=2,
                                 name='maxConv4')(conv4)

        conv5 = Convolution1D(nb_filter=nb_filter,
                              filter_length=5,
                              border_mode='valid',
                              activation='relu',
                              subsample_length=1,
                              name='conv5')(embedding)
        maxConv5 = MaxPooling1D(pool_length=2,
                                name='maxConv5')(conv5)

        x = merge([maxConv4, maxConv5], mode='concat')

        x = Dropout(0.15)(x)

        x = RNN(rnn_output_size)(x)

        x = Dense(hidden_dims, activation='relu', init='he_normal',
                  W_constraint = maxnorm(3), b_constraint=maxnorm(3),
                  name='mlp')(x)

        x = Dropout(0.10, name='drop')(x)

        output = Dense(1, init='he_normal',
                       activation='sigmoid', name='output')(x)

        model = Model(input=main_input, output=output)
        model.compile(loss={'output':'binary_crossentropy'},
                    optimizer=Adadelta(lr=0.95, epsilon=1e-06),
                    metrics=["accuracy"])
        return model
sst1_cnn_rnn.py 文件源码 项目:crnn 作者: ultimate010 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def build_model():
    main_input = Input(shape=(maxlen, ), dtype='int32', name='main_input')
    embedding  = Embedding(max_features, embedding_dims,
                  weights=[np.matrix(W)], input_length=maxlen,
                  name='embedding')(main_input)

    embedding = Dropout(0.50)(embedding)

    conv4 = Convolution1D(nb_filter=nb_filter,
                          filter_length=4,
                          border_mode='valid',
                          activation='relu',
                          subsample_length=1,
                          name='conv4')(embedding)
    maxConv4 = MaxPooling1D(pool_length=2,
                             name='maxConv4')(conv4)

    conv5 = Convolution1D(nb_filter=nb_filter,
                          filter_length=5,
                          border_mode='valid',
                          activation='relu',
                          subsample_length=1,
                          name='conv5')(embedding)
    maxConv5 = MaxPooling1D(pool_length=2,
                            name='maxConv5')(conv5)

    x = merge([maxConv4, maxConv5], mode='concat')

    x = Dropout(0.15)(x)

    x = RNN(rnn_output_size)(x)

    x = Dense(hidden_dims, activation='relu', init='he_normal',
              W_constraint = maxnorm(3), b_constraint=maxnorm(3),
              name='mlp')(x)

    x = Dropout(0.10, name='drop')(x)

    output = Dense(nb_classes, init='he_normal',
                   activation='softmax', name='output')(x)

    model = Model(input=main_input, output=output)
    model.compile(loss={'output':'categorical_crossentropy'},
                optimizer=Adadelta(lr=0.95, epsilon=1e-06),
                metrics=["accuracy"])
    return model
fasttext.py 文件源码 项目:sentence-classification 作者: jind11 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def main():

    # read pre-trained embeddings
    embeddings = load_embeddings(embedding_path, 'word2vec')

    test_accus = [] # Collect test accuracy for each fold
    for i in xrange(n_folds):
        fold = i + 1
        logging.info('Fold {} of {}...'.format(fold, n_folds))
        # read data
        train_data, train_labels, test_data, test_labels, seq_len, vocab_size = load_data_MR_fasttext(data_path, fold=fold)

        # update train directory according to fold number
        train_dir = base_train_dir + '/' + str(fold)
        # create train directory if not exist
        if not os.path.exists(train_dir):
            os.makedirs(train_dir)
        # create log file handler
        file_handler = logging.FileHandler(pjoin(train_dir, "log.txt"))
        logging.getLogger().addHandler(file_handler)

        # check whether the model has been trained, if not, create a new one
        if os.path.exists(train_dir + '/model.json'):
            # load json and create model
            json_file = open(train_dir + '/model.json', 'r')
            loaded_model_json = json_file.read()
            json_file.close()
            model = model_from_json(loaded_model_json)
            # load weights into new model
            model.load_weights(train_dir + "/model.h5")
            model.compile(loss={'output':'binary_crossentropy'},
                        optimizer=Adadelta(lr=base_lr, epsilon=1e-6, decay=decay_rate),
                        metrics=["accuracy"])
            print("Loaded model from disk!")
        else:
            model = setup_model(embeddings, seq_len, vocab_size)
            print("Created a new model!")

        # train the model
        test_accu = train(model, train_data, train_labels, test_data, test_labels, embeddings, train_dir)

        # log test accuracy result
        logging.info("\nTest Accuracy for fold {}: {}".format(fold, test_accu))
        test_accus.append(test_accu)

    # write log of test accuracy for all folds
    test_accu_log = open(base_train_dir + "/final_test_accuracy.txt", 'w')
    test_accu_log.write('\n'.join(['Fold {} Test Accuracy: {}'.format(fold, test_accu) for fold, test_accu in enumerate(test_accus)]))
    test_accu_log.write('\nAvg test acc: {}'.format(np.mean(test_accus)))
cnn.py 文件源码 项目:sentence-classification 作者: jind11 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def main():

    # read pre-trained embeddings
    embeddings = load_embeddings(embedding_path, 'word2vec')

    test_accus = [] # Collect test accuracy for each fold
    for i in xrange(n_folds):
        fold = i + 1
        logging.info('Fold {} of {}...'.format(fold, n_folds))
        # read data
        train_data, train_labels, test_data, test_labels, seq_len, vocab_size = load_data_MR(data_path, fold=fold)

        # update train directory according to fold number
        train_dir = base_train_dir + '/' + str(fold)
        # create train directory if not exist
        if not os.path.exists(train_dir):
            os.makedirs(train_dir)
        # create log file handler
        file_handler = logging.FileHandler(pjoin(train_dir, "log.txt"))
        logging.getLogger().addHandler(file_handler)

        # check whether the model has been trained, if not, create a new one
        if os.path.exists(train_dir + '/model.json'):
            # load json and create model
            json_file = open(train_dir + '/model.json', 'r')
            loaded_model_json = json_file.read()
            json_file.close()
            model = model_from_json(loaded_model_json)
            # load weights into new model
            model.load_weights(train_dir + "/model.h5")
            model.compile(loss={'output':'binary_crossentropy'},
                        optimizer=Adadelta(lr=base_lr, epsilon=1e-6, decay=decay_rate),
                        metrics=["accuracy"])
            print("Loaded model from disk!")
        else:
            model = setup_model(embeddings, seq_len, vocab_size)
            print("Created a new model!")

        # train the model
        test_accu = train(model, train_data, train_labels, test_data, test_labels, embeddings, train_dir)

        # log test accuracy result
        logging.info("\nTest Accuracy for fold {}: {}".format(fold, test_accu))
        test_accus.append(test_accu)

    # write log of test accuracy for all folds
    test_accu_log = open(base_train_dir + "/final_test_accuracy.txt", 'w')
    test_accu_log.write('\n'.join(['Fold {} Test Accuracy: {}'.format(fold, test_accu) for fold, test_accu in enumerate(test_accus)]))
    test_accu_log.write('\nAvg test acc: {}'.format(np.mean(test_accus)))
crnn.py 文件源码 项目:sentence-classification 作者: jind11 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def main():

    # read pre-trained embeddings
    embeddings = load_embeddings(embedding_path, 'word2vec')

    test_accus = [] # Collect test accuracy for each fold
    for i in xrange(n_folds):
        fold = i + 1
        logging.info('Fold {} of {}...'.format(fold, n_folds))
        # read data
        train_data, train_labels, test_data, test_labels, seq_len, vocab_size = load_data_MR(data_path, fold=fold)

        # update train directory according to fold number
        train_dir = base_train_dir + '/' + str(fold)
        # create train directory if not exist
        if not os.path.exists(train_dir):
            os.makedirs(train_dir)
        # create log file handler
        file_handler = logging.FileHandler(pjoin(train_dir, "log.txt"))
        logging.getLogger().addHandler(file_handler)

        # check whether the model has been trained, if not, create a new one
        if os.path.exists(train_dir + '/model.json'):
            # load json and create model
            json_file = open(train_dir + '/model.json', 'r')
            loaded_model_json = json_file.read()
            json_file.close()
            model = model_from_json(loaded_model_json)
            # load weights into new model
            model.load_weights(train_dir + "/model.h5")
            model.compile(loss={'output':'binary_crossentropy'},
                        optimizer=Adadelta(lr=base_lr, epsilon=1e-6, decay=decay_rate),
                        metrics=["accuracy"])
            print("Loaded model from disk!")
        else:
            model = setup_model(embeddings, seq_len, vocab_size)
            print("Created a new model!")

        # train the model
        test_accu = train(model, train_data, train_labels, test_data, test_labels, embeddings, train_dir)

        # log test accuracy result
        logging.info("\nTest Accuracy for fold {}: {}".format(fold, test_accu))
        test_accus.append(test_accu)

    # write log of test accuracy for all folds
    test_accu_log = open(base_train_dir + "/final_test_accuracy.txt", 'w')
    test_accu_log.write('\n'.join(['Fold {} Test Accuracy: {}'.format(fold, test_accu) for fold, test_accu in enumerate(test_accus)]))
    test_accu_log.write('\nAvg test acc: {}'.format(np.mean(test_accus)))
lstm_process.py 文件源码 项目:ParseLawDocuments 作者: FanhuaandLuomu 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def LSTM_model2(X_train,Y_train,X_val,Y_val,X_test,Y_test,test_label):
    print('Loading embedding successful!')
    print('len(X_train):'+str(len(X_train)))
    print('len(X_val):'+str(len(X_val)))
    print('len(X_test):'+str(len(X_test)))
    print('len(Y_train):'+str(len(Y_train)))
    print('len(Y_val):')+str(len(Y_val))
    print('len(Y_test):'+str(len(Y_test)))
    # print(test_label)
    print('X_train shape:',X_train.shape)
    print('X_val shape:',X_val.shape)
    print('X_test shape:',X_test.shape)
    print('Build model...')

    model=Sequential()

    # ??lstm
    # model.add(LSTM(lstm_output_dim,return_sequences=True,\
    #               input_shape=(maxlen,embedding_dim)))
    # model.add(LSTM(lstm_output_dim,return_sequences=True))
    # model.add(LSTM(lstm_output_dim))

    model.add(LSTM(lstm_output_dim,input_shape=(maxlen,embedding_dim)))

    model.add(Dense(hidden_dim))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))

    # model.add(Dense(hidden_dim))
    # model.add(Activation('relu'))
    # model.add(Dropout(0.5))

    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))

    # optmr=Adadelta(lr=0.9,rho=0.90,epsilon=1e-08)
    model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])

    plot(model,to_file='model.png')

    checkpointer=ModelCheckpoint(filepath='best_model.hdf5',monitor='val_acc',verbose=1,\
                                save_best_only=True,mode='max')

    # history=LossHistory()

    hist=model.fit(X_train,Y_train, batch_size=32, nb_epoch=20, verbose=1, shuffle=True,  #20 10
                validation_data=(X_val,Y_val),callbacks=[checkpointer])
    # print(history.losses)
    print hist.history

    model.load_weights('best_model.hdf5') 

    # score=model.evaluate(X_test,Y_test,batch_size=32,verbose=1)
    # print 'score:',score

    #p_label=model.predict_classes(X_test,batch_size=32,verbose=1)  # ????????
    p_prob=model.predict_proba(X_test,batch_size=32,verbose=1)
    p_label=np.array([np.argsort(item)[-1] for item in p_prob])
    test_acc=np_utils.accuracy(p_label,test_label)

    return p_label,p_prob
Stock_Prediction_Model_Stateless_LSTM.py 文件源码 项目:StockRecommendSystem 作者: doncat99 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def lstm_model(self):
        model = Sequential()
        first = True
        for idx in range(len(self.paras.model['hidden_layers'])):
            if idx == (len(self.paras.model['hidden_layers']) - 1):
                model.add(LSTM(int(self.paras.model['hidden_layers'][idx]), return_sequences=False))
                model.add(Activation(self.paras.model['activation']))
                model.add(Dropout(self.paras.model['dropout']))
            elif first == True:
                model.add(LSTM(input_shape=(None, int(self.paras.n_features)),
                               units=int(self.paras.model['hidden_layers'][idx]),
                               return_sequences=True))
                model.add(Activation(self.paras.model['activation']))
                model.add(Dropout(self.paras.model['dropout']))
                first = False
            else:
                model.add(LSTM(int(self.paras.model['hidden_layers'][idx]), return_sequences=True))
                model.add(Activation(self.paras.model['activation']))
                model.add(Dropout(self.paras.model['dropout']))

        if self.paras.model['optimizer'] == 'sgd':
            #optimizer = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
            optimizer = optimizers.SGD(lr=self.paras.model['learning_rate'], decay=1e-6, momentum=0.9, nesterov=True)
        elif self.paras.model['optimizer'] == 'rmsprop':
            #optimizer = optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)
            optimizer = optimizers.RMSprop(lr=self.paras.model['learning_rate']/10, rho=0.9, epsilon=1e-08, decay=0.0)
        elif self.paras.model['optimizer'] == 'adagrad':
            #optimizer = optimizers.Adagrad(lr=0.01, epsilon=1e-08, decay=0.0)
            optimizer = optimizers.Adagrad(lr=self.paras.model['learning_rate'], epsilon=1e-08, decay=0.0)
        elif self.paras.model['optimizer'] == 'adam':
            #optimizer = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
            optimizer = optimizers.Adam(lr=self.paras.model['learning_rate']/10, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
        elif self.paras.model['optimizer'] == 'adadelta':
            optimizer = optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0)
        elif self.paras.model['optimizer'] == 'adamax':
            optimizer = optimizers.Adamax(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
        elif self.paras.model['optimizer'] == 'nadam':
            optimizer = optimizers.Nadam(lr=0.002, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)
        else:
            optimizer = optimizers.Adam(lr=self.paras.model['learning_rate']/10, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)

        # output layer
        model.add(Dense(units=self.paras.model['out_layer']))
        model.add(Activation(self.paras.model['out_activation']))
        model.compile(loss=self.paras.model['loss'], optimizer=optimizer, metrics=['accuracy'])

        return model
NeuralNetRegressor.py 文件源码 项目:job-salary-prediction 作者: soton-data-mining 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def predict(self):

        def get_weights(model, layer_id):
            layer = model.layers[layer_id]
            weights = layer.get_weights()
            firstWeights = weights[1]
            print(firstWeights)

        def export_model(model, name):
            if not (os.path.exists("neural_net_models")):
                os.makedirs("neural_net_models")
            model_json = model.to_json()
            with open("neural_net_models/" + name + ".json", "w") as json_file:
                json_file.write(model_json)
            # serialize weights to HDF5
            model.save_weights("neural_net_models/" + name + ".h5")

        def import_model(model_name):
            json_file = open("neural_net_models/" + model_name + '.json', 'r')
            loaded_model_json = json_file.read()
            json_file.close()
            model = model_from_json(loaded_model_json)
            # load weights into new model
            model.load_weights("neural_net_models/" + model_name + ".h5")
            print("Loaded " + model_name + " from disk")
            return model

        model = import_model('ut_Dense100_L1_m5s3_L2_m1s03_lr07_d1e07')
        """
        model = Sequential()
        model.add(Dense(100, input_dim=85, activation='relu',
                        kernel_initializer=initializers.RandomNormal(
                                mean=5, stddev=3, seed=None)))
        model.add(Dense(1, activation='linear',
                        kernel_initializer=initializers.RandomNormal(
                                mean=1, stddev=0.3, seed=None)))
        """
        # rms = opt.RMSprop(lr=0.01, rho=0.9, epsilon=1e-08, decay =1e-9)
        adadelta = opt.Adadelta(lr=1.0, rho=0.95, epsilon=1e-08, decay=0.0)
        # nadam = opt.Nadam(lr=0.05, beta_1=0.9, beta_2=0.999, epsilon=1e-08, schedule_decay=0.004)
        model.compile(loss='mean_absolute_error', optimizer=adadelta, metrics=[metrics.mae])
        # optimizer='adam'
        model.fit(
                self.x_train, self.y_train,
                validation_data=(self.x_test, self.y_test),
                epochs=1000, batch_size=160000, verbose=1
        )

        export_model(model, 'ut_Dense100_L1_m5s3_L2_m1s03_lr07_d1e07')
        return (self.y_train, self.y_test)
averagemethod.py 文件源码 项目:FacialExpressionRecognition 作者: LamUong 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def model_generate():
    img_rows, img_cols = 48, 48

    model = Sequential()
    model.add(Convolution2D(64, 5, 5, border_mode='valid',
                            input_shape=(1, img_rows, img_cols)))
    model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
    model.add(keras.layers.convolutional.ZeroPadding2D(padding=(2, 2), dim_ordering='th'))
    model.add(MaxPooling2D(pool_size=(5, 5),strides=(2, 2)))

    model.add(keras.layers.convolutional.ZeroPadding2D(padding=(1, 1), dim_ordering='th')) 
    model.add(Convolution2D(64, 3, 3))
    model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
    model.add(keras.layers.convolutional.ZeroPadding2D(padding=(1, 1), dim_ordering='th')) 
    model.add(Convolution2D(64, 3, 3))
    model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
    model.add(keras.layers.convolutional.AveragePooling2D(pool_size=(3, 3),strides=(2, 2)))

    model.add(keras.layers.convolutional.ZeroPadding2D(padding=(1, 1), dim_ordering='th'))
    model.add(Convolution2D(128, 3, 3))
    model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
    model.add(keras.layers.convolutional.ZeroPadding2D(padding=(1, 1), dim_ordering='th'))
    model.add(Convolution2D(128, 3, 3))
    model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))

    model.add(keras.layers.convolutional.ZeroPadding2D(padding=(1, 1), dim_ordering='th'))
    model.add(keras.layers.convolutional.AveragePooling2D(pool_size=(3, 3),strides=(2, 2)))

    model.add(Flatten())
    model.add(Dense(1024))
    model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
    model.add(Dropout(0.2))
    model.add(Dense(1024))
    model.add(keras.layers.advanced_activations.PReLU(init='zero', weights=None))
    model.add(Dropout(0.2))

    model.add(Dense(7))
    model.add(Activation('softmax'))

    ada = Adadelta(lr=0.1, rho=0.95, epsilon=1e-08)
    model.compile(loss='categorical_crossentropy',
                  optimizer=ada,
                  metrics=['accuracy'])
    model.summary()
    return model


问题


面经


文章

微信
公众号

扫码关注公众号