python类Adam()的实例源码

test_discrete.py 文件源码 项目:keras-rl 作者: matthiasplappert 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def test_double_dqn():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions))
    model.add(Activation('linear'))

    memory = SequentialMemory(limit=1000, window_length=1)
    policy = EpsGreedyQPolicy(eps=.1)
    dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=50,
                   target_model_update=1e-1, policy=policy, enable_double_dqn=True)
    dqn.compile(Adam(lr=1e-3))

    dqn.fit(env, nb_steps=2000, visualize=False, verbose=0)
    policy.eps = 0.
    h = dqn.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.)
test_discrete.py 文件源码 项目:keras-rl 作者: matthiasplappert 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_duel_dqn():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions, activation='linear'))

    memory = SequentialMemory(limit=1000, window_length=1)
    policy = EpsGreedyQPolicy(eps=.1)
    dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=50,
                   target_model_update=1e-1, policy=policy, enable_double_dqn=False, enable_dueling_network=True)
    dqn.compile(Adam(lr=1e-3))

    dqn.fit(env, nb_steps=2000, visualize=False, verbose=0)
    policy.eps = 0.
    h = dqn.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.)
test_discrete.py 文件源码 项目:keras-rl 作者: matthiasplappert 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_sarsa():
    env = TwoRoundDeterministicRewardEnv()
    np.random.seed(123)
    env.seed(123)
    random.seed(123)
    nb_actions = env.action_space.n

    # Next, we build a very simple model.
    model = Sequential()
    model.add(Dense(16, input_shape=(1,)))
    model.add(Activation('relu'))
    model.add(Dense(nb_actions, activation='linear'))

    policy = EpsGreedyQPolicy(eps=.1)
    sarsa = SARSAAgent(model=model, nb_actions=nb_actions, nb_steps_warmup=50, policy=policy)
    sarsa.compile(Adam(lr=1e-3))

    sarsa.fit(env, nb_steps=20000, visualize=False, verbose=0)
    policy.eps = 0.
    h = sarsa.test(env, nb_episodes=20, visualize=False)
    assert_allclose(np.mean(h.history['episode_reward']), 3.)
utils_models.py 文件源码 项目:auto_ml 作者: ClimbsRocks 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_optimizer(name='Adadelta'):
    if name == 'SGD':
        return optimizers.SGD(clipnorm=1.)
    if name == 'RMSprop':
        return optimizers.RMSprop(clipnorm=1.)
    if name == 'Adagrad':
        return optimizers.Adagrad(clipnorm=1.)
    if name == 'Adadelta':
        return optimizers.Adadelta(clipnorm=1.)
    if name == 'Adam':
        return optimizers.Adam(clipnorm=1.)
    if name == 'Adamax':
        return optimizers.Adamax(clipnorm=1.)
    if name == 'Nadam':
        return optimizers.Nadam(clipnorm=1.)

    return optimizers.Adam(clipnorm=1.)
critic.py 文件源码 项目:rldurak 作者: janEbert 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def create_model(self, epsilon):
        """Return a compiled model and the state and action input
        layers with the given epsilon for numerical stability.
        """
        inputs = Input(shape=(self.state_shape,))
        action_input = Input(shape=(self.action_shape,))
        x1 = Dense(self.neurons_per_layer[0], activation='relu')(inputs)
        x1 = Dense(self.neurons_per_layer[1], activation='relu')(x1)
        x2 = Dense(self.neurons_per_layer[1], activation='relu')(action_input)
        x = add([x1, x2])
        for n in self.neurons_per_layer[2:]:
            x = Dense(n, activation='relu')(x)
        outputs = Dense(self.action_shape)(x)

        model = Model(inputs=[inputs, action_input], outputs=outputs)

        assert self.optimizer_choice in ['adam', 'rmsprop']
        if self.optimizer_choice == 'adam':
            opti = Adam(lr=self.alpha, epsilon=epsilon)
        else:
            opti = RMSprop(lr=self.alpha, epsilon=epsilon)
        model.compile(optimizer=opti, loss='mse')
        return model, inputs, action_input
train.py 文件源码 项目:tartarus 作者: sergiooramas 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_model(config):
    """Builds the cnn."""
    params = config.model_arch
    get_model = getattr(models, 'get_model_'+str(params['architecture']))
    model = get_model(params)
    #model = model_kenun.build_convnet_model(params)
    # Learning setup
    t_params = config.training_params
    sgd = SGD(lr=t_params["learning_rate"], decay=t_params["decay"],
              momentum=t_params["momentum"], nesterov=t_params["nesterov"])
    adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
    optimizer = eval(t_params['optimizer'])
    metrics = ['mean_squared_error']
    if config.model_arch["final_activation"] == 'softmax':
        metrics.append('categorical_accuracy')
    if t_params['loss_func'] == 'cosine':
        loss_func = eval(t_params['loss_func'])
    else:
        loss_func = t_params['loss_func']
    model.compile(loss=loss_func, optimizer=optimizer,metrics=metrics)

    return model
refit_unet_d8g_222_swrap_09.py 文件源码 项目:kaggle_dsb2017 作者: astoc 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def unet_model_xd3_2_6l_grid(nb_filter=48, dim=5, clen=3 , img_rows=224, img_cols=224 ):   # NOTE that this procedure is/should be used with img_rows & img_cols as None

    # aiming for architecture similar to the http://cs231n.stanford.edu/reports2016/317_Report.pdf
    # Our model is six layers deep, consisting  of  a  series  of  three  CONV-RELU-POOL  layyers (with 32, 32, and 64 3x3 filters), a CONV-RELU layer (with 128 3x3 filters), three UPSCALE-CONV-RELU lay- ers (with 64, 32, and 32 3x3 filters), and a final 1x1 CONV- SIGMOID layer to output pixel-level predictions. Its struc- ture resembles Figure 2, though with the number of pixels, filters, and levels as described here

    ## 3D CNN version of a previously developed unet_model_xd_6j 
    zconv = clen

    inputs = Input((1, dim, img_rows, img_cols))
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(inputs)
    conv1 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv1)
    pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)

    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool1)
    conv2 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv2)
    pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)


    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(pool2)
    conv4 = Convolution3D(4*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv4)


    up6 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv2], mode='concat', concat_axis=1)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up6)
    conv6 = Convolution3D(2*nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv6)


    up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1)  # original - only works for even dim 
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(up7)
    conv7 = Convolution3D(nb_filter, zconv, clen, clen, activation='relu', border_mode='same')(conv7)


    pool11 = MaxPooling3D(pool_size=(2, 1, 1))(conv7)

    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool11)
    conv12 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv12)
    pool12 = MaxPooling3D(pool_size=(2, 1, 1))(conv12)

    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool12)
    conv13 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv13)
    pool13 = MaxPooling3D(pool_size=(2, 1, 1))(conv13)

    if (dim < 16):
        conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool13)
    else:   # need one extra layer to get to 1D x 2D mask ...
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(pool13)
            conv14 = Convolution3D(2*nb_filter, zconv, 1, 1, activation='relu', border_mode='same')(conv14)
            pool14 = MaxPooling3D(pool_size=(2, 1, 1))(conv14)
            conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(pool14)        

    model = Model(input=inputs, output=conv8)


    model.compile(optimizer=Adam(lr=1e-4), loss=dice_coef_loss, metrics=[dice_coef])
    #model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0),  loss=dice_coef_loss, metrics=[dice_coef])

    return model
reinforcement.py 文件源码 项目:detection-2016-nipsws 作者: imatge-upc 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_q_network(weights_path):
    model = Sequential()
    model.add(Dense(1024, init=lambda shape, name: normal(shape, scale=0.01, name=name), input_shape=(25112,)))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(1024, init=lambda shape, name: normal(shape, scale=0.01, name=name)))
    model.add(Activation('relu'))
    model.add(Dropout(0.2))
    model.add(Dense(6, init=lambda shape, name: normal(shape, scale=0.01, name=name)))
    model.add(Activation('linear'))
    adam = Adam(lr=1e-6)
    model.compile(loss='mse', optimizer=adam)
    if weights_path != "0":
        model.load_weights(weights_path)
    return model
example_gan_cifar10.py 文件源码 项目:Deep-Learning-with-Keras 作者: PacktPublishing 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def main():
    # z \in R^100
    latent_dim = 100
    # x \in R^{28x28}
    # generator (z -> x)
    generator = model_generator()
    # discriminator (x -> y)
    discriminator = model_discriminator()
    example_gan(AdversarialOptimizerSimultaneous(), "output/gan-cifar10",
                opt_g=Adam(1e-4, decay=1e-5),
                opt_d=Adam(1e-3, decay=1e-5),
                nb_epoch=100, generator=generator, discriminator=discriminator,
                latent_dim=latent_dim)
models.py 文件源码 项目:segmentation_DLMI 作者: imatge-upc 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def compile_masked(model, lr=0.0005, num_classes=2):
        beta_1 = 0.9
        beta_2 = 0.999
        epsilon = 10 ** (-8)
        optimizer = Adam(lr=lr, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, clipnorm=1.)

        loss = [lambda y_true, y_pred: y_pred]

        model.compile(
            optimizer=optimizer,
            loss=loss,

        )
        return model
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def cnn3adam_slim(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    model = Sequential(name='cnn3adam')
    model.add(Conv1D (kernel_size = (50), filters = 32, strides=5, input_shape=input_shape, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 64, strides=1, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Conv1D (kernel_size = (5), filters = 64, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Flatten())
    model.add(Dense (250, activation='elu', kernel_initializer='he_normal'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense (250, activation='elu', kernel_initializer='he_normal'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam())
    return model
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def cnn3adam_filter(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
    print('use L2 model instead!')
    print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
    model = Sequential(name='cnn3adam_filter')
    model.add(Conv1D (kernel_size = (50), filters = 128, strides=5, input_shape=input_shape, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 256, strides=1, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())

    model.add(Conv1D (kernel_size = (5), filters = 300, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Flatten(name='conv3'))
    model.add(Dense (1500, activation='elu', kernel_initializer='he_normal'))
    model.add(BatchNormalization(name='fc1'))
    model.add(Dropout(0.5))
    model.add(Dense (1500, activation='elu', kernel_initializer='he_normal'))
    model.add(BatchNormalization(name='fc2'))
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation = 'softmax',name='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001))
    return model
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def cnn3adam_filter_l2(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
    print('use more L2 model instead!')
    print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
    model = Sequential(name='cnn3adam_filter_l2')
    model.add(Conv1D (kernel_size = (50), filters = 128, strides=5, input_shape=input_shape, 
                      kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.005))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 256, strides=1, kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.005))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())

    model.add(Conv1D (kernel_size = (5), filters = 300, strides=2, kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.005))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Flatten(name='conv3'))
    model.add(Dense (1500, activation='relu', kernel_initializer='he_normal',name='fc1'))
    model.add(BatchNormalization(name='bn1'))
    model.add(Dropout(0.5, name='do1'))
    model.add(Dense (1500, activation='relu', kernel_initializer='he_normal',name='fc2'))
    model.add(BatchNormalization(name='bn2'))
    model.add(Dropout(0.5, name='do2'))
    model.add(Dense(n_classes, activation = 'softmax',name='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001))
#    print('reset learning rate')
    return model
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def cnn3adam_filter_morel2_slim(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    model = Sequential(name='cnn3adam_filter_morel2_slim')
    model.add(Conv1D (kernel_size = (50), filters = 128, strides=5, input_shape=input_shape, 
                      kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.05))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 128, strides=1, kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.01))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Conv1D (kernel_size = (5), filters = 256, strides=2, kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.01))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Flatten(name='conv3'))
    model.add(Dense (512, activation='relu', kernel_initializer='he_normal',name='fc1'))
    model.add(BatchNormalization(name='bn1'))
    model.add(Dropout(0.5, name='do1'))
    model.add(Dense (512, activation='relu', kernel_initializer='he_normal',name='fc2'))
    model.add(BatchNormalization(name='bn2'))
    model.add(Dropout(0.5, name='do2'))
    model.add(Dense(n_classes, activation = 'softmax',name='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001))
#    print('reset learning rate')
    return model
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def ann(input_shape, n_classes, layers=2, neurons=80, dropout=0.35 ):
    """
    for working with extracted features
    """
    model = Sequential(name='ann')
    for l in range(layers):
        model.add(Dense (neurons, input_shape=input_shape, activation='elu', kernel_initializer='he_normal'))
        model.add(BatchNormalization())
        model.add(Dropout(dropout))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=[keras.metrics.categorical_accuracy])
    return model
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def ann_rnn(input_shape, n_classes):
    """
    for working with extracted features
    """
    model = Sequential(name='ann_rnn')
    model.add(TimeDistributed(Dense (80, activation='elu', kernel_initializer='he_normal'), input_shape=input_shape))
    model.add(BatchNormalization())
    model.add(Dropout(0.35))
    model.add(TimeDistributed(Dense (80, activation='elu', kernel_initializer='he_normal')))
    model.add(BatchNormalization())
    model.add(Dropout(0.35))
    model.add(LSTM(50))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=[keras.metrics.categorical_accuracy])
    return model
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def pure_rnn_do(input_shape, n_classes,layers=2, neurons=80, dropout=0.3):
    """
    just replace ANN by RNNs
    """
    model = Sequential(name='pure_rnn')
    model.add(LSTM(neurons, return_sequences=False if layers==1 else True, input_shape=input_shape,dropout=dropout, recurrent_dropout=dropout))
    for i in range(layers-1):
        model.add(LSTM(neurons, return_sequences=False if i==layers-2 else True,dropout=dropout, recurrent_dropout=dropout))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001), metrics=[keras.metrics.categorical_accuracy])
    return model
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def pure_rnn_3(input_shape, n_classes):
    """
    just replace ANN by 3xRNNs
    """
    model = Sequential(name='pure_rnn')
    model.add(LSTM(80, return_sequences=True, input_shape=input_shape))
    model.add(LSTM(80, return_sequences=True))
    model.add(LSTM(50, return_sequences=False))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=[keras.metrics.categorical_accuracy])
    return model



#%%
model.py 文件源码 项目:deeppavlov 作者: deepmipt 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _init_from_scratch(self):
        if self.model_name == 'log_reg':
            self.model = self.log_reg_model()
        if self.model_name == 'svc':
            self.model = self.svc_model()
        if self.model_name == 'cnn_word':
            self.model = self.cnn_word_model()
        if self.model_name == 'lstm_word':
            self.model = self.lstm_word_model()

        if self.model_type == 'nn':
            optimizer = Adam(lr=self.opt['learning_rate'], decay=self.opt['learning_decay'])
            self.model.compile(loss='binary_crossentropy',
                               optimizer=optimizer,
                               metrics=['binary_accuracy'])
model.py 文件源码 项目:deepcut 作者: rkcosmos 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_convo_nn2(no_word=200, n_gram=21, no_char=178):
    input1 = Input(shape=(n_gram,))
    input2 = Input(shape=(n_gram,))

    a = Embedding(no_char, 32, input_length=n_gram)(input1)
    a = SpatialDropout1D(0.15)(a)
    a = BatchNormalization()(a)

    a_concat = []
    for i in range(1,9):
        a_concat.append(conv_unit(a, n_gram, no_word, window = i))
    for i in range(9,12):
        a_concat.append(conv_unit(a, n_gram, no_word-50, window = i))
    a_concat.append(conv_unit(a, n_gram, no_word-100, window = 12))
    a_sum = Maximum()(a_concat)

    b = Embedding(12, 12, input_length=n_gram)(input2)
    b = SpatialDropout1D(0.15)(b)

    x = Concatenate(axis=-1)([a, a_sum, b])
    #x = Concatenate(axis=-1)([a_sum, b])
    x = BatchNormalization()(x)

    x = Flatten()(x)
    x = Dense(100, activation='relu')(x)
    out = Dense(1, activation='sigmoid')(x)

    model = Model(inputs=[input1, input2], outputs=out)
    model.compile(optimizer=Adam(),
                  loss='binary_crossentropy', metrics=['acc'])
    return model
n11_train.py 文件源码 项目:kaggle_yt8m 作者: N01Z3 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def add_fit_args(train):
    train.add_argument('--ngpus', default=1, type=int, help='amount of gpus')
    train.add_argument('--versn', default='rn-21', type=str, help='version of net')
    train.add_argument('--begin', default=0, type=int, help='start epoch')

    train.add_argument('--batch', default=8000, type=int, help='the batch size')
    train.add_argument('--nepoh', default=30, type=int, help='amount of epoch')
    train.add_argument('--check', default=20, type=int, help='period of check in iteration')
    train.add_argument('--lrate', default=0.001, type=float, help='start learning rate')
    train.add_argument('--optim', default='adam', type=str, help='optimizer')
    train.add_argument('--patin', default=15, type=int, help='waiting for n iteration without improvement')

    train.add_argument('--losss', default='categorical_crossentropy', type=str, help='loss function')
    train.add_argument('--mtype', default=1, type=int, help='neurons on branch audio')

    train.add_argument('--wpath', default=WPATH, type=str, help='net symbol path')
    train.add_argument('--dpath', default=FAST, type=str, help='data_path')
    train.add_argument('--split', default=200000, type=int, help='data_path')
    return train
n12_pepe_zoo.py 文件源码 项目:kaggle_yt8m 作者: N01Z3 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_mod5(opt=adam()):
    n = 3 * 1024
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n)
    x1 = fc_identity(x1, n)


    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n)
    x2 = fc_identity(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    # plot(model=model, show_shapes=True)
    return model
EES.py 文件源码 项目:EEDS-keras 作者: MarkPrecursor 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def EES_train():
    EES = model_EES16()
    EES.compile(optimizer=adam(lr=0.0003), loss='mse')
    print EES.summary()

    data, label = pd.read_training_data("./train.h5")
    val_data, val_label = pd.read_training_data("./val.h5")

    checkpoint = ModelCheckpoint("EES_check.h5", monitor='val_loss', verbose=1, save_best_only=True,
                                 save_weights_only=False, mode='min')
    callbacks_list = [checkpoint]

    history_callback = EES.fit(data, label, batch_size=64, validation_data=(val_data, val_label),
                               callbacks=callbacks_list, shuffle=True, nb_epoch=200, verbose=1)
    pandas.DataFrame(history_callback.history).to_csv("history.csv")
    EES.save_weights("EES_final.h5")
experiment.py 文件源码 项目:srcnn 作者: qobilidop 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, scale=3, load_set=None, build_model=None,
                 optimizer='adam', save_dir='.'):
        self.scale = scale
        self.load_set = partial(load_set, scale=scale)
        self.build_model = partial(build_model, scale=scale)
        self.optimizer = optimizer
        self.save_dir = Path(save_dir)
        self.save_dir.mkdir(parents=True, exist_ok=True)

        self.config_file = self.save_dir / 'config.yaml'
        self.model_file = self.save_dir / 'model.hdf5'

        self.train_dir = self.save_dir / 'train'
        self.train_dir.mkdir(exist_ok=True)
        self.history_file = self.train_dir / 'history.csv'
        self.weights_dir = self.train_dir / 'weights'
        self.weights_dir.mkdir(exist_ok=True)

        self.test_dir = self.save_dir / 'test'
        self.test_dir.mkdir(exist_ok=True)
n12_pepe_zoo.py 文件源码 项目:kaggle_yt8m 作者: N01Z3 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_mod2(opt=adam()):
    n = 2 * 1024
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n)
    # x1 = fc_block1(x1, n)
    x1 = fc_identity(x1, n)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n)
    # x2 = fc_block1(x2, n)
    x2 = fc_identity(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    # x = fc_block1(x, n)
    x = fc_identity(x, n)
    x = fc_block1(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    plot(model=model, show_shapes=True)
    return model
n12_pepe_zoo.py 文件源码 项目:kaggle_yt8m 作者: N01Z3 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def build_mod3(opt=adam()):
    n = 2 * 1024
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n)
    x1 = fc_identity(x1, n)
    x1 = fc_identity(x1, n)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n)
    x2 = fc_identity(x2, n)
    x2 = fc_identity(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, n)
    x = fc_identity(x, n)
    x = fc_block1(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    plot(model=model, show_shapes=True)
    return model
n12_pepe_zoo.py 文件源码 项目:kaggle_yt8m 作者: N01Z3 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_mod7(opt=adam()):
    n = 3 * 1024
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n)
    x1 = fc_identity(x1, n)
    # x1 = fc_identity(x1, n)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n)
    x2 = fc_identity(x2, n)
    # x2 = fc_identity(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, n)
    # x = fc_identity(x, n)
    x = fc_block1(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    plot(model=model, show_shapes=True)
    return model
n12_pepe_zoo.py 文件源码 项目:kaggle_yt8m 作者: N01Z3 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build_mod8(opt=adam()):
    n = 3 * 1024
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n)
    x1 = fc_identity(x1, n)
    # x1 = fc_identity(x1, n)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n)
    x2 = fc_identity(x2, n)
    # x2 = fc_identity(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, 4000)
    # x = fc_identity(x, n)
    # x = fc_block1(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    plot(model=model, show_shapes=True)
    return model
n12_pepe_zoo.py 文件源码 项目:kaggle_yt8m 作者: N01Z3 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build_mod4(opt=adam()):
    n = 1500
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n)
    x1 = fc_identity(x1, n)
    x1 = fc_identity(x1, n)
    x1 = fc_identity(x1, n)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n)
    x2 = fc_identity(x2, n)
    x2 = fc_identity(x2, n)
    x2 = fc_identity(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, n)
    x = fc_identity(x, n)
    x = fc_identity(x, n)
    x = fc_identity(x, n)
    x = fc_block1(x, 2*n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    # plot(model=model, show_shapes=True)
    return model
n12_pepe_zoo.py 文件源码 项目:kaggle_yt8m 作者: N01Z3 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def build_mod9(opt=adam()):
    n = int(2.2 * 1024)
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n, d=0.3)
    x1 = fc_identity(x1, n, d=0.3)
    x1 = fc_identity(x1, n, d=0.3)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n, d=0.3)
    x2 = fc_identity(x2, n, d=0.3)
    x2 = fc_identity(x2, n, d=0.3)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, n, d=0.3)
    x = fc_identity(x, n, d=0.3)
    x = fc_block1(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    # plot(model=model, show_shapes=True)
    return model


问题


面经


文章

微信
公众号

扫码关注公众号