def print_regression_model_summary(prefix, y_test, y_pred, parmsFromNormalization):
y_test = (y_test*parmsFromNormalization.std*parmsFromNormalization.sqrtx2) + parmsFromNormalization.mean
y_pred = (y_pred*parmsFromNormalization.std*parmsFromNormalization.sqrtx2) + parmsFromNormalization.mean
mse = mean_squared_error(y_test, y_pred)
error_AC, rmsep, mape, rmse = almost_correct_based_accuracy(y_test, y_pred, 10)
rmsle = calculate_rmsle(y_test, y_pred)
print ">> %s AC_errorRate=%.1f RMSEP=%.6f MAPE=%6f RMSE=%6f mse=%f rmsle=%.5f" %(prefix, error_AC, rmsep, mape, rmse, mse, rmsle)
log.write("%s AC_errorRate=%.1f RMSEP=%.6f MAPE=%6f RMSE=%6f mse=%f rmsle=%.5f" %(prefix, error_AC, rmsep, mape, rmse, mse, rmsle))
# Utility function to report best scores