def prep_model(inputs, N, s0pad, s1pad, c, granlevels=1):
# LSTM
lstm = LSTM(N, return_sequences=True, implementation=2,
kernel_regularizer=l2(c['l2reg']), recurrent_regularizer=l2(c['l2reg']),
bias_regularizer=l2(c['l2reg']))
x1 = inputs[0]
x2 = inputs[1]
h1 = lstm(x1)
h2 = lstm(x2)
W_x = Dense(N, kernel_initializer='glorot_uniform', use_bias=True,
kernel_regularizer=l2(c['l2reg']))
W_h = Dense(N, kernel_initializer='orthogonal', use_bias=True,
kernel_regularizer=l2(c['l2reg']))
sigmoid = Activation('sigmoid')
a1 = multiply([x1, sigmoid( add([W_x(x1), W_h(h1)]) )])
a2 = multiply([x2, sigmoid( add([W_x(x2), W_h(h2)]) )])
# Averaging
avg = Lambda(function=lambda x: K.mean(x, axis=1),
output_shape=lambda shape: (shape[0], ) + shape[2:])
gran1 = avg(a1)
gran2 = avg(a2)
return [gran1, gran2], N
python类multiply()的实例源码
def prep_model(inputs, N, s0pad, s1pad, c, granlevels=1):
# LSTM
lstm = LSTM(N, return_sequences=True, implementation=2,
kernel_regularizer=l2(c['l2reg']), recurrent_regularizer=l2(c['l2reg']),
bias_regularizer=l2(c['l2reg']))
x1 = inputs[0]
x2 = inputs[1]
h1 = lstm(x1)
h2 = lstm(x2)
W_x = Dense(N, kernel_initializer='glorot_uniform', use_bias=True,
kernel_regularizer=l2(c['l2reg']))
W_h = Dense(N, kernel_initializer='orthogonal', use_bias=True,
kernel_regularizer=l2(c['l2reg']))
sigmoid = Activation('sigmoid')
a1 = multiply([x1, sigmoid( add([W_x(x1), W_h(h1)]) )])
a2 = multiply([x2, sigmoid( add([W_x(x2), W_h(h2)]) )])
# Averaging
avg = Lambda(function=lambda x: K.mean(x, axis=1),
output_shape=lambda shape: (shape[0], ) + shape[2:])
gran1 = avg(a1)
gran2 = avg(a2)
return [gran1, gran2], N
def test_tiny_mul_random(self):
np.random.seed(1988)
input_dim = 10
num_channels = 6
# Define a model
input_tensor = Input(shape = (input_dim, ))
x1 = Dense(num_channels)(input_tensor)
x2 = Dense(num_channels)(x1)
x3 = Dense(num_channels)(x1)
x4 = multiply([x2, x3])
x5 = Dense(num_channels)(x4)
model = Model(inputs=[input_tensor], outputs=[x5])
# Set some random weights
model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
# Get the coreml model
self._test_keras_model(model)
def test_dense_elementwise_params(self):
options = dict(
modes = [add, multiply, concatenate, average, maximum]
)
def build_model(mode):
x1 = Input(shape=(3,))
x2 = Input(shape=(3,))
y1 = Dense(4)(x1)
y2 = Dense(4)(x2)
z = mode([y1, y2])
model = Model([x1,x2], z)
return mode, model
product = itertools.product(*options.values())
args = [build_model(p[0]) for p in product]
print("Testing a total of %s cases. This could take a while" % len(args))
for param, model in args:
self._run_test(model, param)
recurrent_highway_networks.py 文件源码
项目:recurrentshop
作者: farizrahman4u
项目源码
文件源码
阅读 18
收藏 0
点赞 0
评论 0
def RHN(input_dim, hidden_dim, depth):
# Wrapped model
inp = Input(batch_shape=(batch_size, input_dim))
state = Input(batch_shape=(batch_size, hidden_dim))
drop_mask = Input(batch_shape=(batch_size, hidden_dim))
# To avoid all zero mask causing gradient to vanish
inverted_drop_mask = Lambda(lambda x: 1.0 - x, output_shape=lambda s: s)(drop_mask)
drop_mask_2 = Lambda(lambda x: x + 0., output_shape=lambda s: s)(inverted_drop_mask)
dropped_state = multiply([state, inverted_drop_mask])
y, new_state = RHNCell(units=hidden_dim, recurrence_depth=depth,
kernel_initializer=weight_init,
kernel_regularizer=l2(weight_decay),
kernel_constraint=max_norm(gradient_clip),
bias_initializer=Constant(transform_bias),
recurrent_initializer=weight_init,
recurrent_regularizer=l2(weight_decay),
recurrent_constraint=max_norm(gradient_clip))([inp, dropped_state])
return RecurrentModel(input=inp, output=y,
initial_states=[state, drop_mask],
final_states=[new_state, drop_mask_2])
# lr decay Scheduler
def QRNcell():
xq = Input(batch_shape=(batch_size, embedding_dim * 2))
# Split into context and query
xt = Lambda(lambda x, dim: x[:, :dim], arguments={'dim': embedding_dim},
output_shape=lambda s: (s[0], s[1] / 2))(xq)
qt = Lambda(lambda x, dim: x[:, dim:], arguments={'dim': embedding_dim},
output_shape=lambda s: (s[0], s[1] / 2))(xq)
h_tm1 = Input(batch_shape=(batch_size, embedding_dim))
zt = Dense(1, activation='sigmoid', bias_initializer=Constant(2.5))(multiply([xt, qt]))
zt = Lambda(lambda x, dim: K.repeat_elements(x, dim, axis=1), arguments={'dim': embedding_dim})(zt)
ch = Dense(embedding_dim, activation='tanh')(concatenate([xt, qt], axis=-1))
rt = Dense(1, activation='sigmoid')(multiply([xt, qt]))
rt = Lambda(lambda x, dim: K.repeat_elements(x, dim, axis=1), arguments={'dim': embedding_dim})(rt)
ht = add([multiply([zt, ch, rt]), multiply([Lambda(lambda x: 1 - x, output_shape=lambda s: s)(zt), h_tm1])])
return RecurrentModel(input=xq, output=ht, initial_states=[h_tm1], final_states=[ht], return_sequences=True)
#
# Load data
#
def cosine_dist(self, inputs):
"""Define a function for a lambda layer of a model."""
input1, input2 = inputs
a = K.abs(input1-input2)
b = multiply(inputs)
return K.concatenate([a, b])
def cosine_dist(self, inputs):
input1, input2 = inputs
a = K.abs(input1-input2)
b = multiply(inputs)
return K.concatenate([a, b])
def eltwise(layer, layer_in, layerId):
out = {}
if (layer['params']['layer_type'] == 'Multiply'):
# This input reverse is to handle visualization
out[layerId] = multiply(layer_in[::-1])
elif (layer['params']['layer_type'] == 'Sum'):
out[layerId] = add(layer_in[::-1])
elif (layer['params']['layer_type'] == 'Average'):
out[layerId] = average(layer_in[::-1])
elif (layer['params']['layer_type'] == 'Dot'):
out[layerId] = dot(layer_in[::-1], -1)
else:
out[layerId] = maximum(layer_in[::-1])
return out
def mlp_ptscorer(inputs, Ddim, N, l2reg, pfx='out', Dinit='glorot_uniform', sum_mode='sum', extra_inp=[]):
""" Element-wise features from the pair fed to an MLP. """
linear = Activation('linear')
if sum_mode == 'absdiff':
absdiff = Lambda(function=lambda x: K.abs(x[0] - x[1]),
output_shape=lambda shape: shape[0])
# model.add_node(name=pfx+'sum', layer=absdiff_merge(model, inputs))
mlp_inputs = absdiff(inputs)
elif sum_mode == 'sum':
outsum = linear(add(inputs))
outmul = linear(multiply(inputs))
mlp_inputs = [outsum, outmul] + extra_inp
def mlp_args(mlp_inputs):
""" return model.add_node() args that are good for mlp_inputs list
of both length 1 and more than 1. """
if isinstance(mlp_inputs, list):
mlp_inputs = concatenate(mlp_inputs)
return mlp_inputs
# Ddim may be either 0 (no hidden layer), scalar (single hidden layer) or
# list (multiple hidden layers)
if Ddim == 0:
mlp_inputs = mlp_args(mlp_inputs)
Ddim = []
elif not isinstance(Ddim, list):
Ddim = [Ddim]
if Ddim:
for i, D in enumerate(Ddim):
mlp_inputs = Dense(int(N*D), activation='tanh', kernel_initializer=Dinit, kernel_regularizer=l2(l2reg))(mlp_args(mlp_inputs))
# model.add_node(name=pfx+'hdn[%d]'%(i,),
# layer=Dense(output_dim=int(N*D), W_regularizer=l2(l2reg), activation='tanh', init=Dinit),
# **mlp_args(mlp_inputs))
# mlp_inputs = [pfx+'hdn[%d]'%(i,)]
outmlp = Dense(1, kernel_regularizer=l2(l2reg))(mlp_inputs)
return outmlp
def mlp_ptscorer(inputs, Ddim, N, l2reg, pfx='out', Dinit='glorot_uniform', sum_mode='sum', extra_inp=[]):
""" Element-wise features from the pair fed to an MLP. """
linear = Activation('linear')
if sum_mode == 'absdiff':
absdiff = Lambda(function=lambda x: K.abs(x[0] - x[1]),
output_shape=lambda shape: shape[0])
# model.add_node(name=pfx+'sum', layer=absdiff_merge(model, inputs))
mlp_inputs = absdiff(inputs)
elif sum_mode == 'sum':
outsum = linear(add(inputs))
outmul = linear(multiply(inputs))
mlp_inputs = [outsum, outmul] + extra_inp
def mlp_args(mlp_inputs):
""" return model.add_node() args that are good for mlp_inputs list
of both length 1 and more than 1. """
if isinstance(mlp_inputs, list):
mlp_inputs = concatenate(mlp_inputs)
return mlp_inputs
# Ddim may be either 0 (no hidden layer), scalar (single hidden layer) or
# list (multiple hidden layers)
if Ddim == 0:
mlp_inputs = mlp_args(mlp_inputs)
Ddim = []
elif not isinstance(Ddim, list):
Ddim = [Ddim]
if Ddim:
for i, D in enumerate(Ddim):
mlp_inputs = Dense(int(N*D), activation='tanh', kernel_initializer=Dinit, kernel_regularizer=l2(l2reg))(mlp_args(mlp_inputs))
# model.add_node(name=pfx+'hdn[%d]'%(i,),
# layer=Dense(output_dim=int(N*D), W_regularizer=l2(l2reg), activation='tanh', init=Dinit),
# **mlp_args(mlp_inputs))
# mlp_inputs = [pfx+'hdn[%d]'%(i,)]
outmlp = Dense(1, kernel_regularizer=l2(l2reg))(mlp_inputs)
return outmlp
def build_generator(self):
model = Sequential()
model.add(Dense(128 * 7 * 7, activation="relu", input_dim=100))
model.add(Reshape((7, 7, 128)))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(128, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(UpSampling2D())
model.add(Conv2D(64, kernel_size=3, padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(momentum=0.8))
model.add(Conv2D(self.channels, kernel_size=3, padding='same'))
model.add(Activation("tanh"))
model.summary()
noise = Input(shape=(100,))
label = Input(shape=(1,), dtype='int32')
label_embedding = Flatten()(Embedding(self.num_classes, 100)(label))
input = multiply([noise, label_embedding])
img = model(input)
return Model([noise, label], img)
def RWA(input_dim, output_dim):
x = Input((input_dim, ))
h_tm1 = Input((output_dim, ))
n_tm1 = Input((output_dim, ))
d_tm1 = Input((output_dim, ))
x_h = concatenate([x, h_tm1])
u = Dense(output_dim)(x)
g = Dense(output_dim, activation='tanh')(x_h)
a = Dense(output_dim, use_bias=False)(x_h)
e_a = Lambda(lambda x: K.exp(x))(a)
z = multiply([u, g])
nt = add([n_tm1, multiply([z, e_a])])
dt = add([d_tm1, e_a])
dt = Lambda(lambda x: 1.0 / x)(dt)
ht = multiply([nt, dt])
ht = Activation('tanh')(ht)
return RecurrentModel(input=x, output=ht,
initial_states=[h_tm1, n_tm1, d_tm1],
final_states=[ht, nt, dt],
state_initializer=[initializers.random_normal(stddev=1.0)])
#####################################################################
# Settings
#####################################################################
rwa_sequence_length_problem.py 文件源码
项目:recurrentshop
作者: farizrahman4u
项目源码
文件源码
阅读 19
收藏 0
点赞 0
评论 0
def RWA(input_dim, output_dim):
x = Input((input_dim, ))
h_tm1 = Input((output_dim, ))
n_tm1 = Input((output_dim, ))
d_tm1 = Input((output_dim, ))
x_h = concatenate([x, h_tm1])
u = Dense(output_dim)(x)
g = Dense(output_dim, activation='tanh')(x_h)
a = Dense(output_dim, use_bias=False)(x_h)
e_a = Lambda(lambda x: K.exp(x))(a)
z = multiply([u, g])
nt = add([n_tm1, multiply([z, e_a])])
dt = add([d_tm1, e_a])
dt = Lambda(lambda x: 1.0 / x)(dt)
ht = multiply([nt, dt])
ht = Activation('tanh')(ht)
return RecurrentModel(input=x, output=ht,
initial_states=[h_tm1, n_tm1, d_tm1],
final_states=[ht, nt, dt],
state_initializer=[initializers.random_normal(stddev=1.0)])
#####################################################################
# Settings
#####################################################################
def build_generator(latent_size):
# we will map a pair of (z, L), where z is a latent vector and L is a
# label drawn from P_c, to image space (..., 1, 28, 28)
cnn = Sequential()
cnn.add(Dense(1024, input_dim=latent_size, activation='relu'))
cnn.add(Dense(128 * 7 * 7, activation='relu'))
cnn.add(Reshape((128, 7, 7)))
# upsample to (..., 14, 14)
cnn.add(UpSampling2D(size=(2, 2)))
cnn.add(Conv2D(256, 5, padding='same',
activation='relu',
kernel_initializer='glorot_normal'))
# upsample to (..., 28, 28)
cnn.add(UpSampling2D(size=(2, 2)))
cnn.add(Conv2D(128, 5, padding='same',
activation='relu',
kernel_initializer='glorot_normal'))
# take a channel axis reduction
cnn.add(Conv2D(1, 2, padding='same',
activation='tanh',
kernel_initializer='glorot_normal'))
# this is the z space commonly refered to in GAN papers
latent = Input(shape=(latent_size, ))
# this will be our label
image_class = Input(shape=(1,), dtype='int32')
# 10 classes in MNIST
cls = Flatten()(Embedding(10, latent_size,
embeddings_initializer='glorot_normal')(image_class))
# hadamard product between z-space and a class conditional embedding
h = layers.multiply([latent, cls])
fake_image = cnn(h)
return Model([latent, image_class], fake_image)
def build_generator(latent_size):
# we will map a pair of (z, L), where z is a latent vector and L is a
# label drawn from P_c, to image space (..., 1, 28, 28)
cnn = Sequential()
cnn.add(Dense(1024, input_dim=latent_size, activation='relu'))
cnn.add(Dense(128 * 7 * 7, activation='relu'))
cnn.add(Reshape((128, 7, 7)))
# upsample to (..., 14, 14)
cnn.add(UpSampling2D(size=(2, 2)))
cnn.add(Conv2D(256, 5, padding='same',
activation='relu',
kernel_initializer='glorot_normal'))
# upsample to (..., 28, 28)
cnn.add(UpSampling2D(size=(2, 2)))
cnn.add(Conv2D(128, 5, padding='same',
activation='relu',
kernel_initializer='glorot_normal'))
# take a channel axis reduction
cnn.add(Conv2D(1, 2, padding='same',
activation='tanh',
kernel_initializer='glorot_normal'))
# this is the z space commonly refered to in GAN papers
latent = Input(shape=(latent_size, ))
# this will be our label
image_class = Input(shape=(1,), dtype='int32')
# 10 classes in MNIST
cls = Flatten()(Embedding(10, latent_size,
embeddings_initializer='glorot_normal')(image_class))
# hadamard product between z-space and a class conditional embedding
h = layers.multiply([latent, cls])
fake_image = cnn(h)
return Model([latent, image_class], fake_image)
def _augment_model(self, model, score, reweighting):
# Extract some info from the model
loss = model.loss
optimizer = model.optimizer.__class__(**model.optimizer.get_config())
output_shape = K.int_shape(model.output)[1:]
if isinstance(loss, str) and loss.startswith("sparse"):
output_shape = output_shape[:-1] + (1,)
# Make sure that some stuff look ok
assert not isinstance(loss, list)
# We need to create two more inputs
# 1. the targets
# 2. the predicted scores
y_true = Input(shape=output_shape)
pred_score = Input(shape=(reweighting.weight_size,))
# Create a loss layer and a score layer
loss_tensor = LossLayer(loss)([y_true, model.output])
last_layer = -2 if isinstance(model.layers[-1], Activation) else -1
score_tensor = _get_scoring_layer(
score,
y_true,
model.output,
loss,
model.layers[last_layer]
)
# Create the sample weights
weights = reweighting.weight_layer()([score_tensor, pred_score])
# Create the output
weighted_loss = multiply([loss_tensor, weights])
# Create the metric layers
metrics = model.metrics or []
metrics = [
MetricLayer(metric)([y_true, model.output])
for metric in metrics
]
# Finally build, compile, return
new_model = TransparentModel(
inputs=_tolist(model.input) + [y_true, pred_score],
outputs=[weighted_loss],
observed_tensors=[loss_tensor, weighted_loss, score_tensor] + metrics
)
new_model.compile(
optimizer=optimizer,
loss=lambda y_true, y_pred: y_pred
)
return new_model
def _augment_model(self, model, score, reweighting):
# Extract some info from the model
loss = model.loss
optimizer = model.optimizer.__class__(**model.optimizer.get_config())
output_shape = K.int_shape(model.output)[1:]
if isinstance(loss, str) and loss.startswith("sparse"):
output_shape = output_shape[:-1] + (1,)
# Make sure that some stuff look ok
assert not isinstance(loss, list)
# We need to create two more inputs
# 1. the targets
# 2. the predicted scores
y_true = Input(shape=output_shape)
pred_score = Input(shape=(reweighting.weight_size,))
# Create a loss layer and a score layer
loss_tensor = LossLayer(loss)([y_true, model.output])
last_layer = -2 if isinstance(model.layers[-1], Activation) else -1
score_tensor = _get_scoring_layer(
score,
y_true,
model.output,
loss,
model.layers[last_layer]
)
# Create the sample weights
weights = reweighting.weight_layer()([score_tensor, pred_score])
# Create the output
weighted_loss = multiply([loss_tensor, weights])
# Create the metric layers
metrics = model.metrics or []
metrics = [
MetricLayer(metric)([y_true, model.output])
for metric in metrics
]
# Finally build, compile, return
new_model = TransparentModel(
inputs=_tolist(model.input) + [y_true, pred_score],
outputs=[weighted_loss],
observed_tensors=[loss_tensor, weighted_loss, score_tensor] + metrics
)
new_model.compile(
optimizer=optimizer,
loss=lambda y_true, y_pred: y_pred
)
return new_model
def _augment_model(self, model, score, reweighting):
# Extract some info from the model
loss = model.loss
optimizer = model.optimizer.__class__(**model.optimizer.get_config())
output_shape = K.int_shape(model.output)[1:]
if isinstance(loss, str) and loss.startswith("sparse"):
output_shape = output_shape[:-1] + (1,)
# Make sure that some stuff look ok
assert not isinstance(loss, list)
# We need to create two more inputs
# 1. the targets
# 2. the predicted scores
y_true = Input(shape=output_shape)
pred_score = Input(shape=(reweighting.weight_size,))
# Create a loss layer and a score layer
loss_tensor = LossLayer(loss)([y_true, model.output])
last_layer = -2 if isinstance(model.layers[-1], Activation) else -1
score_tensor = _get_scoring_layer(
score,
y_true,
model.output,
loss,
model.layers[last_layer]
)
# Create the sample weights
weights = reweighting.weight_layer()([score_tensor, pred_score])
# Create the output
weighted_loss = multiply([loss_tensor, weights])
# Create the metric layers
metrics = model.metrics or []
metrics = [
MetricLayer(metric)([y_true, model.output])
for metric in metrics
]
# Finally build, compile, return
new_model = TransparentModel(
inputs=_tolist(model.input) + [y_true, pred_score],
outputs=[weighted_loss],
observed_tensors=[loss_tensor, weighted_loss, score_tensor] + metrics
)
new_model.compile(
optimizer=optimizer,
loss=lambda y_true, y_pred: y_pred
)
return new_model
def _augment_model(self, model, score, reweighting):
# Extract some info from the model
loss = model.loss
optimizer = model.optimizer.__class__(**model.optimizer.get_config())
output_shape = K.int_shape(model.output)[1:]
if isinstance(loss, str) and loss.startswith("sparse"):
output_shape = output_shape[:-1] + (1,)
# Make sure that some stuff look ok
assert not isinstance(loss, list)
# We need to create two more inputs
# 1. the targets
# 2. the predicted scores
y_true = Input(shape=output_shape)
pred_score = Input(shape=(reweighting.weight_size,))
# Create a loss layer and a score layer
loss_tensor = LossLayer(loss)([y_true, model.output])
last_layer = -2 if isinstance(model.layers[-1], Activation) else -1
score_tensor = _get_scoring_layer(
score,
y_true,
model.output,
loss,
model.layers[last_layer]
)
# Create the sample weights
weights = reweighting.weight_layer()([score_tensor, pred_score])
# Create the output
weighted_loss = multiply([loss_tensor, weights])
# Create the metric layers
metrics = model.metrics or []
metrics = [
MetricLayer(metric)([y_true, model.output])
for metric in metrics
]
# Finally build, compile, return
new_model = TransparentModel(
inputs=_tolist(model.input) + [y_true, pred_score],
outputs=[weighted_loss],
observed_tensors=[loss_tensor, weighted_loss, score_tensor] + metrics
)
new_model.compile(
optimizer=optimizer,
loss=lambda y_true, y_pred: y_pred
)
return new_model
def create(cls, classes, maximum_tokens, embedding_size, lstm_units, dropout, bidirectional):
"""
Create a model that labels semantic relationships between text pairs.
The text pairs are passed in as two aligned matrices of size
(batch size, maximum embedding tokens, embedding size). They are generated by TextPairEmbeddingGenerator.
:param classes: the number of distinct classes to categorize
:type classes: int
:param maximum_tokens: maximum number of embedded tokens
:type maximum_tokens: int
:param embedding_size: size of the embedding vector
:type embedding_size: int
:param lstm_units: number of hidden units in the shared LSTM
:type lstm_units: int
:param dropout: dropout rate or None for no dropout
:type dropout: float or None
:param bidirectional: should the shared LSTM be bidirectional?
:type bidirectional: bool
:return: the created model
:rtype: TextPairClassifier
"""
# Create the model geometry.
input_shape = (maximum_tokens, embedding_size)
# Input two sets of aligned text pairs.
input_1 = Input(input_shape)
input_2 = Input(input_shape)
# Apply the same LSTM to each.
if bidirectional:
lstm = Bidirectional(LSTM(lstm_units), name="lstm")
else:
lstm = LSTM(lstm_units, name="lstm")
r1 = lstm(input_1)
r2 = lstm(input_2)
# Concatenate the embeddings with their product and squared difference.
p = multiply([r1, r2])
negative_r2 = Lambda(lambda x: -x)(r2)
d = add([r1, negative_r2])
q = multiply([d, d])
v = [r1, r2, p, q]
lstm_output = concatenate(v)
if dropout is not None:
lstm_output = Dropout(dropout, name="dropout")(lstm_output)
# A single-layer perceptron maps the concatenated vector to the labels. It has a number of hidden states equal
# to the square root of the length of the concatenated vector.
m = sum(t.shape[1].value for t in v)
perceptron = Dense(math.floor(math.sqrt(m)), activation="relu")(lstm_output)
logistic_regression = Dense(classes, activation="softmax", name="softmax")(perceptron)
model = Model([input_1, input_2], logistic_regression, "Text pair classifier")
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"])
return cls(model)