python类MaxPooling1D()的实例源码

models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def tsinalis(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 1, 15000, 1)
    """
    model = Sequential(name='Tsinalis')
    model.add(Conv1D (kernel_size = (200), filters = 20, input_shape=input_shape, activation='relu'))
    print(model.input_shape)
    print(model.output_shape)
    model.add(MaxPooling1D(pool_size = (20), strides=(10)))
    print(model.output_shape)
    model.add(keras.layers.core.Reshape([20,-1,1]))
    print(model.output_shape)    
    model.add(Conv2D (kernel_size = (20,30), filters = 400, activation='relu'))
    print(model.output_shape)
    model.add(MaxPooling2D(pool_size = (1,10), strides=(1,2)))
    print(model.output_shape)
    model.add(Flatten())
    print(model.output_shape)
    model.add(Dense (500, activation='relu'))
    model.add(Dense (500, activation='relu'))
    model.add(Dense(n_classes, activation = 'softmax',activity_regularizer=keras.regularizers.l2()  ))
    model.compile( loss='categorical_crossentropy', optimizer=keras.optimizers.SGD(), metrics=[keras.metrics.categorical_accuracy])
    return model
model.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def first_block(tensor_input,filters,kernel_size=3,pooling_size=1,dropout=0.5):
    k1,k2 = filters

    out = Conv1D(k1,1,padding='same')(tensor_input)
    out = BatchNormalization()(out)
    out = Activation('relu')(out)
    out = Dropout(dropout)(out)
    out = Conv1D(k2,kernel_size,padding='same')(out)


    pooling = MaxPooling1D(pooling_size,padding='same')(tensor_input)


    # out = merge([out,pooling],mode='sum')
    out = add([out,pooling])
    return out
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def rcnn(input_shape, n_classes):
    """
    Input size should be [batch, 1d, ch] = (XXX, 3000, 1)
    """
    model = Sequential(name='RCNN test')
    model.add(Conv1D (kernel_size = (200), filters = 20, batch_input_shape=input_shape, activation='elu'))
    model.add(MaxPooling1D(pool_size = (20), strides=(10)))
    model.add(Conv1D (kernel_size = (20), filters = 200, activation='elu'))
    model.add(MaxPooling1D(pool_size = (10), strides=(3)))
    model.add(Conv1D (kernel_size = (20), filters = 200, activation='elu'))
    model.add(MaxPooling1D(pool_size = (10), strides=(3)))
    model.add(Dense (512, activation='elu'))
    model.add(Dense (512, activation='elu'))
    model.add(Reshape((1,model.output_shape[1])))
    model.add(LSTM(256, stateful=True, return_sequences=False))
    model.add(Dropout(0.3))
    model.add(Dense(n_classes, activation = 'sigmoid'))
    model.compile(loss='categorical_crossentropy', optimizer=Adadelta())
    return model
model.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def repeated_block(x,filters,kernel_size=3,pooling_size=1,dropout=0.5):

    k1,k2 = filters


    out = BatchNormalization()(x)
    out = Activation('relu')(out)
    out = Conv1D(k1,kernel_size,strides=2,padding='same')(out)
    out = BatchNormalization()(out)
    out = Activation('relu')(out)
    out = Dropout(dropout)(out)
    out = Conv1D(k2,kernel_size,strides=2,padding='same')(out)


    pooling = MaxPooling1D(pooling_size,strides=4,padding='same')(x)

    out = add([out, pooling])

    #out = merge([out,pooling])
    return out
dna.py 文件源码 项目:deepcpg 作者: cangermueller 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __call__(self, inputs):
        x = inputs[0]

        kernel_regularizer = kr.L1L2(self.l1_decay, self.l2_decay)
        x = kl.Conv1D(128, 11,
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)
        x = kl.Activation('relu')(x)
        x = kl.MaxPooling1D(4)(x)

        x = kl.Flatten()(x)

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Dense(self.nb_hidden,
                     kernel_initializer=self.init,
                     kernel_regularizer=kernel_regularizer)(x)
        x = kl.Activation('relu')(x)
        x = kl.Dropout(self.dropout)(x)

        return self._build(inputs, x)
dna.py 文件源码 项目:deepcpg 作者: cangermueller 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __call__(self, inputs):
        x = inputs[0]

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Conv1D(128, 11,
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)
        x = kl.Activation('relu')(x)
        x = kl.MaxPooling1D(4)(x)

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        x = kl.Conv1D(256, 7,
                      kernel_initializer=self.init,
                      kernel_regularizer=kernel_regularizer)(x)
        x = kl.Activation('relu')(x)
        x = kl.MaxPooling1D(4)(x)

        kernel_regularizer = kr.L1L2(l1=self.l1_decay, l2=self.l2_decay)
        gru = kl.recurrent.GRU(256, kernel_regularizer=kernel_regularizer)
        x = kl.Bidirectional(gru)(x)
        x = kl.Dropout(self.dropout)(x)

        return self._build(inputs, x)
kaggleQQCharCNNPlus.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def createBaseNetworkSmall(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Embedding(input_dim=inputDim,
                              output_dim=inputDim, input_length=inputLength))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
kaggleQQCharCNNPlus.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def createBaseNetworkLarge(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Embedding(input_dim=inputDim,
                              output_dim=inputDim, input_length=inputLength))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
kaggleQQDistRMS_CL.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def createBaseNetworkSmall(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Embedding(input_dim=inputDim,
                              output_dim=inputDim, input_length=inputLength))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
kaggleQQDistRMS_CL.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def createBaseNetworkLarge(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Embedding(input_dim=inputDim,
                              output_dim=inputDim, input_length=inputLength))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
kaggleQQSigmoid_SG_smallerAlphabet.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def createBaseNetworkSmall(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu',
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu',
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu',
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu',
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu',
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
kaggleQQSigmoid_SG_BCE.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def createBaseNetworkSmall(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu',  input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
kaggleQQSigmoid_SG_BCE.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def createBaseNetworkLarge(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu',  input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
kaggleQQDistSG_CL.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def createBaseNetworkSmall(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Embedding(input_dim=inputDim,
                              output_dim=inputDim, input_length=inputLength))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
kaggleQQDistSG_CL.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def createBaseNetworkLarge(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Embedding(input_dim=inputDim,
                              output_dim=inputDim, input_length=inputLength))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
testSigmoid.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def createBaseNetworkLarge(inputDim, inputLength):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(2048, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
testSigmoidSmaller.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def netSigmoid(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu',  input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
kaggleQQ_Euc.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def createBaseNetworkSmall(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu',  input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    baseNetwork.add(Dense(1024, activation='relu'))
    baseNetwork.add(Dropout(0.5))
    return baseNetwork
test_Euc_Small.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def createBaseNetworkSmall(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu',  input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(128, activation='relu'))
    baseNetwork.add(Dropout(0.2))
    baseNetwork.add(Dense(128, activation='relu'))
    baseNetwork.add(Dropout(0.2))
    return baseNetwork
test.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def createBaseNetworkSmall(inputDim, inputLength):
        baseNetwork = Sequential()
        baseNetwork.add(Embedding(input_dim=inputDim, output_dim=inputDim, input_length=inputLength))
        baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
        baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
        baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
        baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
        baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
        baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
        baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
        baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
        baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
        baseNetwork.add(Flatten())
        baseNetwork.add(Dense(1024, activation='relu'))
        baseNetwork.add(Dropout(0.5))
        baseNetwork.add(Dense(1024, activation='relu'))
        baseNetwork.add(Dropout(0.5))
        return baseNetwork
test.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def createBaseNetworkLarge(inputDim, inputLength):
        baseNetwork = Sequential()
        baseNetwork.add(Embedding(input_dim=inputDim, output_dim=inputDim, input_length=inputLength))
        baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
        baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
        baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
        baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
        baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
        baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
        baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
        baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
        baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
        baseNetwork.add(Flatten())
        baseNetwork.add(Dense(2048, activation='relu'))
        baseNetwork.add(Dropout(0.5))
        baseNetwork.add(Dense(2048, activation='relu'))
        baseNetwork.add(Dropout(0.5))
        return baseNetwork
kaggleQQ_Euc_Small.py 文件源码 项目:kaggle-quora-question-pairs 作者: voletiv 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def createBaseNetworkSmall(inputLength, inputDim):
    baseNetwork = Sequential()
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu',  input_shape=(inputLength, inputDim),
                           kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
        mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
    baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
    baseNetwork.add(Flatten())
    baseNetwork.add(Dense(128, activation='relu'))
    baseNetwork.add(Dropout(0.2))
    baseNetwork.add(Dense(128, activation='relu'))
    baseNetwork.add(Dropout(0.2))
    return baseNetwork
neon_lstm.py 文件源码 项目:stratosphere-lstm 作者: mendozawow 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def build_lstm(input_shape):
    model = Sequential()
    # model.add(Masking(input_shape=input_shape, mask_value=-1.))
    model.add(Embedding(input_shape[0], 128, input_length=input_shape[1]))

    model.add(Convolution1D(nb_filter=64,
                            filter_length=5,
                            border_mode='valid',
                            activation='relu',
                            subsample_length=1))
    model.add(MaxPooling1D(pool_length=4))

    model.add(GRU(128))

    # model.add(GRU(128, return_sequences=False))
    # Add dropout if overfitting
    # model.add(Dropout(0.5))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model
dga_lstm.py 文件源码 项目:stratosphere-lstm 作者: mendozawow 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def build_lstm(input_shape):
    model = Sequential()
    # model.add(Masking(input_shape=input_shape, mask_value=-1.))
    model.add(Embedding(input_shape[0], 128, input_length=input_shape[1]))

    model.add(Convolution1D(nb_filter=64,
                            filter_length=5,
                            border_mode='valid',
                            activation='relu',
                            subsample_length=1))
    model.add(MaxPooling1D(pool_length=model.output_shape[1]))

    model.add(Flatten())

    model.add(Dense(128))

    # model.add(GRU(128, return_sequences=False))
    # Add dropout if overfitting
    # model.add(Dropout(0.5))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model
agent_LSTM.py 文件源码 项目:gym-forex 作者: harveybc 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def _build_model(self):
        # Deep Conv Neural Net for Deep-Q learning Model
        model = Sequential()
        model.add(Conv1D(128, 3, input_shape=(19,48)))
        model.add(Activation('relu'))
        model.add(MaxPooling1D(pool_size=2))

        model.add(Conv1D(64, 3))
        model.add(Activation('relu'))
        model.add(MaxPooling1D(pool_size=2))

        model.add(Flatten())  # this converts our 3D feature maps to 1D feature vectors
        model.add(Dense(64))
        model.add(Activation('relu'))
        model.add(Dropout(0.5))
        model.add(Dense(self.action_size))
        model.add(Activation('sigmoid'))

        model.compile(loss=self._huber_loss,
                      optimizer=Adam(lr=self.learning_rate))
        #model.compile(loss='binary_crossentropy',
        #              optimizer='rmsprop',
        #              metrics=['accuracy'])

        return model
doc-cnn4.py 文件源码 项目:char-models 作者: offbit 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def char_block(in_layer, nb_filter=(64, 100), filter_length=(3, 3), subsample=(2, 1), pool_length=(2, 2)):
    block = in_layer
    for i in range(len(nb_filter)):

        block = Conv1D(filters=nb_filter[i],
                       kernel_size=filter_length[i],
                       padding='valid',
                       activation='tanh',
                       strides=subsample[i])(block)

        # block = BatchNormalization()(block)
        # block = Dropout(0.1)(block)
        if pool_length[i]:
            block = MaxPooling1D(pool_size=pool_length[i])(block)

    # block = Lambda(max_1d, output_shape=(nb_filter[-1],))(block)
    block = GlobalMaxPool1D()(block)
    block = Dense(128, activation='relu')(block)
    return block
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def cnn3adam_slim(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    model = Sequential(name='cnn3adam')
    model.add(Conv1D (kernel_size = (50), filters = 32, strides=5, input_shape=input_shape, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 64, strides=1, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Conv1D (kernel_size = (5), filters = 64, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Flatten())
    model.add(Dense (250, activation='elu', kernel_initializer='he_normal'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense (250, activation='elu', kernel_initializer='he_normal'))
    model.add(BatchNormalization())
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam())
    return model
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def cnn3adam_filter(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
    print('use L2 model instead!')
    print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
    model = Sequential(name='cnn3adam_filter')
    model.add(Conv1D (kernel_size = (50), filters = 128, strides=5, input_shape=input_shape, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 256, strides=1, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())

    model.add(Conv1D (kernel_size = (5), filters = 300, strides=2, kernel_initializer='he_normal', activation='elu')) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Flatten(name='conv3'))
    model.add(Dense (1500, activation='elu', kernel_initializer='he_normal'))
    model.add(BatchNormalization(name='fc1'))
    model.add(Dropout(0.5))
    model.add(Dense (1500, activation='elu', kernel_initializer='he_normal'))
    model.add(BatchNormalization(name='fc2'))
    model.add(Dropout(0.5))
    model.add(Dense(n_classes, activation = 'softmax',name='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001))
    return model
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def cnn3adam_filter_l2(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
    print('use more L2 model instead!')
    print('%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%')
    model = Sequential(name='cnn3adam_filter_l2')
    model.add(Conv1D (kernel_size = (50), filters = 128, strides=5, input_shape=input_shape, 
                      kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.005))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 256, strides=1, kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.005))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())

    model.add(Conv1D (kernel_size = (5), filters = 300, strides=2, kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.005))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Flatten(name='conv3'))
    model.add(Dense (1500, activation='relu', kernel_initializer='he_normal',name='fc1'))
    model.add(BatchNormalization(name='bn1'))
    model.add(Dropout(0.5, name='do1'))
    model.add(Dense (1500, activation='relu', kernel_initializer='he_normal',name='fc2'))
    model.add(BatchNormalization(name='bn2'))
    model.add(Dropout(0.5, name='do2'))
    model.add(Dense(n_classes, activation = 'softmax',name='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001))
#    print('reset learning rate')
    return model
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 14 收藏 0 点赞 0 评论 0
def cnn3adam_filter_morel2_slim(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 3000, 3)
    """
    model = Sequential(name='cnn3adam_filter_morel2_slim')
    model.add(Conv1D (kernel_size = (50), filters = 128, strides=5, input_shape=input_shape, 
                      kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.05))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Conv1D (kernel_size = (5), filters = 128, strides=1, kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.01))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Conv1D (kernel_size = (5), filters = 256, strides=2, kernel_initializer='he_normal', activation='relu',kernel_regularizer=keras.regularizers.l2(0.01))) 
    model.add(BatchNormalization())
    model.add(Dropout(0.2))
    model.add(MaxPooling1D())
    model.add(Flatten(name='conv3'))
    model.add(Dense (512, activation='relu', kernel_initializer='he_normal',name='fc1'))
    model.add(BatchNormalization(name='bn1'))
    model.add(Dropout(0.5, name='do1'))
    model.add(Dense (512, activation='relu', kernel_initializer='he_normal',name='fc2'))
    model.add(BatchNormalization(name='bn2'))
    model.add(Dropout(0.5, name='do2'))
    model.add(Dense(n_classes, activation = 'softmax',name='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001))
#    print('reset learning rate')
    return model


问题


面经


文章

微信
公众号

扫码关注公众号