python类BatchNormalization()的实例源码

windpuller.py 文件源码 项目:DeepTrade_keras 作者: happynoom 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, input_shape, lr=0.01, n_layers=2, n_hidden=8, rate_dropout=0.2, loss='risk_estimation'):
        print("initializing..., learing rate %s, n_layers %s, n_hidden %s, dropout rate %s." %(lr, n_layers, n_hidden, rate_dropout))
        self.model = Sequential()
        self.model.add(Dropout(rate=rate_dropout, input_shape=(input_shape[0], input_shape[1])))
        for i in range(0, n_layers - 1):
            self.model.add(LSTM(n_hidden * 4, return_sequences=True, activation='tanh',
                                recurrent_activation='hard_sigmoid', kernel_initializer='glorot_uniform',
                                recurrent_initializer='orthogonal', bias_initializer='zeros',
                                dropout=rate_dropout, recurrent_dropout=rate_dropout))
        self.model.add(LSTM(n_hidden, return_sequences=False, activation='tanh',
                                recurrent_activation='hard_sigmoid', kernel_initializer='glorot_uniform',
                                recurrent_initializer='orthogonal', bias_initializer='zeros',
                                dropout=rate_dropout, recurrent_dropout=rate_dropout))
        self.model.add(Dense(1, kernel_initializer=initializers.glorot_uniform()))
        # self.model.add(BatchNormalization(axis=-1, moving_mean_initializer=Constant(value=0.5),
        #               moving_variance_initializer=Constant(value=0.25)))
        self.model.add(BatchRenormalization(axis=-1, beta_init=Constant(value=0.5)))
        self.model.add(Activation('relu_limited'))
        opt = RMSprop(lr=lr)
        self.model.compile(loss=loss,
                      optimizer=opt,
                      metrics=['accuracy'])
model.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def first_block(tensor_input,filters,kernel_size=3,pooling_size=1,dropout=0.5):
    k1,k2 = filters

    out = Conv1D(k1,1,padding='same')(tensor_input)
    out = BatchNormalization()(out)
    out = Activation('relu')(out)
    out = Dropout(dropout)(out)
    out = Conv1D(k2,kernel_size,padding='same')(out)


    pooling = MaxPooling1D(pooling_size,padding='same')(tensor_input)


    # out = merge([out,pooling],mode='sum')
    out = add([out,pooling])
    return out
train_mlp.py 文件源码 项目:taxi 作者: xuguanggen 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def build_mlp(n_con,n_emb,vocabs_size,n_dis,emb_size,cluster_size):
    hidden_size = 800
    con = Sequential()
    con.add(Dense(input_dim=n_con,output_dim=emb_size))

    emb_list = []
    for i in range(n_emb):
        emb = Sequential()
        emb.add(Embedding(input_dim=vocabs_size[i],output_dim=emb_size,input_length=n_dis))
        emb.add(Flatten())
        emb_list.append(emb)

    model = Sequential()
    model.add(Merge([con] + emb_list,mode='concat'))
    model.add(BatchNormalization())
    model.add(Dense(hidden_size,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(cluster_size,activation='softmax'))
    model.add(Lambda(caluate_point, output_shape =[2]))
    return model
models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def largeann(input_shape, n_classes, layers=3, neurons=2000, dropout=0.35 ):
    """
    for working with extracted features
    """
#    gpu = switch_gpu()
#    with K.tf.device('/gpu:{}'.format(gpu)):
#        K.set_session(K.tf.Session(config=K.tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)))
    model = Sequential(name='ann')
#    model.gpu = gpu
    for l in range(layers):
        model.add(Dense (neurons, input_shape=input_shape, activation='elu', kernel_initializer='he_normal'))
        model.add(BatchNormalization())
        model.add(Dropout(dropout))
    model.add(Dense(n_classes, activation = 'softmax'))
    model.compile(loss='categorical_crossentropy', optimizer=Adam(), metrics=[keras.metrics.categorical_accuracy])
    return model

#%% everyhing recurrent for ANN
ActorNetwork.py 文件源码 项目:Multi-Agent_SelfDriving 作者: MLJejuCamp2017 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def create_actor_network(self, state_size,action_dim):
        print("Now we build the model")

        # Batch norm version
        S = Input(shape=[state_size])
        s1 = BatchNormalization()(S)
        s1 = Dense(HIDDEN1_UNITS)(s1)
        s1 = BatchNormalization()(s1)
        s1 = Activation('relu')(s1)
        s1 = Dense(HIDDEN2_UNITS)(s1)
        s1 = BatchNormalization()(s1)
        h1 = Activation('relu')(s1)

        Steering = Dense(1,activation='tanh')(h1)  
        Acceleration = Dense(1,activation='sigmoid')(h1)   
        Brake = Dense(1,activation='sigmoid')(h1)
        # V = merge([Steering,Acceleration,Brake],mode='concat')
        V = layers.concatenate([Steering,Acceleration,Brake])          
        model = Model(inputs=S,outputs=V)
        return model, model.trainable_weights, S
make_and_run_model.py 文件源码 项目:minc_keras 作者: tfunck 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def make_model(batch_size, image_dim):
    model = Sequential()
    model.add(BatchNormalization(batch_input_shape=(batch_size,image_dim[1],image_dim[2],1)))
    model.add(Conv2D( 16 , [3,3],  activation='relu',padding='same'))
    #model.add(Dropout(0.2))
    model.add(Conv2D( 32 , [3,3],  activation='relu',padding='same'))
    #model.add(Dropout(0.2))
    model.add(Conv2D( 64 , [3,3],  activation='relu',padding='same'))
    model.add(Dropout(0.2))
    #model.add(Conv2D( 16 , [3,3],  activation='relu',padding='same'))
    #model.add(Dropout(0.2))
    #model.add(Conv2D( 16 , [3,3],  activation='relu',padding='same'))
    #model.add(Dropout(0.2))
    #model.add(Conv2D( 16 , [3,3],  activation='relu',padding='same'))
    #model.add(Conv2D(64, (3, 3), activation='relu',padding='same'))
    #model.add(Conv2D(64, (3, 3), activation='relu',padding='same'))
    #model.add(Conv2D(64, (3, 3), activation='relu',padding='same'))
    model.add(Conv2D(1, kernel_size=1,  padding='same', activation='sigmoid'))

    return(model)
model.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def repeated_block(x,filters,kernel_size=3,pooling_size=1,dropout=0.5):

    k1,k2 = filters


    out = BatchNormalization()(x)
    out = Activation('relu')(out)
    out = Conv1D(k1,kernel_size,strides=2,padding='same')(out)
    out = BatchNormalization()(out)
    out = Activation('relu')(out)
    out = Dropout(dropout)(out)
    out = Conv1D(k2,kernel_size,strides=2,padding='same')(out)


    pooling = MaxPooling1D(pooling_size,strides=4,padding='same')(x)

    out = add([out, pooling])

    #out = merge([out,pooling])
    return out
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_keras_import(self):
        model = Sequential()
        model.add(BatchNormalization(center=True, scale=True, beta_regularizer=regularizers.l2(0.01),
                                     gamma_regularizer=regularizers.l2(0.01),
                                     beta_constraint='max_norm', gamma_constraint='max_norm',
                                     input_shape=(10, 16)))
        model.build()
        json_string = Model.to_json(model)
        with open(os.path.join(settings.BASE_DIR, 'media', 'test.json'), 'w') as out:
            json.dump(json.loads(json_string), out, indent=4)
        sample_file = open(os.path.join(settings.BASE_DIR, 'media', 'test.json'), 'r')
        response = self.client.post(reverse('keras-import'), {'file': sample_file})
        response = json.loads(response.content)
        layerId = sorted(response['net'].keys())
        self.assertEqual(response['result'], 'success')
        self.assertEqual(response['net'][layerId[0]]['info']['type'], 'Scale')
        self.assertEqual(response['net'][layerId[1]]['info']['type'], 'BatchNorm')


# ********** Noise Layers **********
test_views.py 文件源码 项目:Fabrik 作者: Cloud-CV 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input'], 'l1': net['BatchNorm'], 'l2': net['Scale']}
        net['l0']['connection']['output'].append('l1')
        # Test 1
        inp = data(net['l0'], '', 'l0')['l0']
        temp = batch_norm(net['l1'], [inp], 'l1', 'l2', net['l2'])
        model = Model(inp, temp['l2'])
        self.assertEqual(model.layers[1].__class__.__name__, 'BatchNormalization')
        # Test 2
        net['l2']['params']['filler'] = 'VarianceScaling'
        net['l2']['params']['bias_filler'] = 'VarianceScaling'
        inp = data(net['l0'], '', 'l0')['l0']
        temp = batch_norm(net['l1'], [inp], 'l1', 'l2', net['l2'])
        model = Model(inp, temp['l2'])
        self.assertEqual(model.layers[1].__class__.__name__, 'BatchNormalization')
        # Test 3
        inp = data(net['l0'], '', 'l0')['l0']
        temp = batch_norm(net['l1'], [inp], 'l1', 'l0', net['l0'])
        model = Model(inp, temp['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'BatchNormalization')
inception_v3.py 文件源码 项目:DeepLearning 作者: ChunML 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def conv2d_bn(x, nb_filter, nb_row, nb_col,
              border_mode='same', subsample=(1, 1),
              name=None):
    '''Utility function to apply conv + BN.
    '''
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None
    if K.image_dim_ordering() == 'th':
        bn_axis = 1
    else:
        bn_axis = 3
    x = Convolution2D(nb_filter, nb_row, nb_col,
                      subsample=subsample,
                      activation='relu',
                      border_mode=border_mode,
                      name=conv_name)(x)
    x = BatchNormalization(axis=bn_axis, name=bn_name)(x)
    return x
models.py 文件源码 项目:enhance 作者: cdiazbas 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def keepsize_256(nx, ny, noise, depth, activation='relu', n_filters=64, l2_reg=1e-7):
    """
    Deep residual network that keeps the size of the input throughout the whole network
    """

    def residual(inputs, n_filters):
        x = ReflectionPadding2D()(inputs)
        x = Conv2D(n_filters, (3, 3), padding='valid', kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg))(x)
        x = BatchNormalization()(x)
        x = Activation(activation)(x)
        x = ReflectionPadding2D()(x)
        x = Conv2D(n_filters, (3, 3), padding='valid', kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg))(x)
        x = BatchNormalization()(x)
        x = add([x, inputs])

        return x

    inputs = Input(shape=(nx, ny, 1))
    x = GaussianNoise(noise)(inputs)

    x = ReflectionPadding2D()(x)
    x = Conv2D(n_filters, (3, 3), padding='valid', kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg))(x)
    x0 = Activation(activation)(x)

    x = residual(x0, n_filters)

    for i in range(depth-1):
        x = residual(x, n_filters)

    x = ReflectionPadding2D()(x)
    x = Conv2D(n_filters, (3, 3), padding='valid', kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg))(x)
    x = BatchNormalization()(x)
    x = add([x, x0])

# Upsampling for superresolution
    x = UpSampling2D()(x)
    x = ReflectionPadding2D()(x)
    x = Conv2D(4*n_filters, (3, 3), padding='valid', kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg))(x)
    x = Activation(activation)(x)

    final = Conv2D(1, (1, 1), padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(l2_reg))(x)

    return Model(inputs=inputs, outputs=final)
sd01a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor, subsample_factor)

    x = BatchNormalization(axis=4)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m05a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m09a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m10a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor, subsample_factor)

    x = BatchNormalization(axis=4)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m02a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m04a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
resnet2d09d.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
resnet2d09e.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
resnet2d09f.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m02a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m04a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m05a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m09a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m10a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor, subsample_factor)

    x = BatchNormalization(axis=4)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
resnet2d09d.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
resnet2d09e.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
resnet2d09f.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
sd01a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor, subsample_factor)

    x = BatchNormalization(axis=4)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
dnn.py 文件源码 项目:Hotpot 作者: Liang-Qiu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def prep_model(inputs, N, s0pad, s1pad, c):
    # Word-level projection before averaging
    inputs[0] = TimeDistributed(Dense(N, activation='relu'))(inputs[0])
    inputs[0] = Lambda(lambda x: K.max(x, axis=1), output_shape=(N, ))(inputs[0])
    inputs[1] = TimeDistributed(Dense(N, activation='relu'))(inputs[1])
    inputs[1] = Lambda(lambda x: K.max(x, axis=1), output_shape=(N, ))(inputs[1])
    merged = concatenate([inputs[0], inputs[1]])

    # Deep
    for i in range(c['deep']):
        merged = Dense(c['nndim'], activation=c['nnact'])(merged)
        merged = Dropout(c['nndropout'])(merged)
        merged = BatchNormalization()(merged)

    is_duplicate = Dense(1, activation='sigmoid')(merged)
    return [is_duplicate], N


问题


面经


文章

微信
公众号

扫码关注公众号