python类MaxPooling2D()的实例源码

models.py 文件源码 项目:AutoSleepScorerDev 作者: skjerns 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def tsinalis(input_shape, n_classes):
    """
    Input size should be [batch, 1d, 2d, ch] = (None, 1, 15000, 1)
    """
    model = Sequential(name='Tsinalis')
    model.add(Conv1D (kernel_size = (200), filters = 20, input_shape=input_shape, activation='relu'))
    print(model.input_shape)
    print(model.output_shape)
    model.add(MaxPooling1D(pool_size = (20), strides=(10)))
    print(model.output_shape)
    model.add(keras.layers.core.Reshape([20,-1,1]))
    print(model.output_shape)    
    model.add(Conv2D (kernel_size = (20,30), filters = 400, activation='relu'))
    print(model.output_shape)
    model.add(MaxPooling2D(pool_size = (1,10), strides=(1,2)))
    print(model.output_shape)
    model.add(Flatten())
    print(model.output_shape)
    model.add(Dense (500, activation='relu'))
    model.add(Dense (500, activation='relu'))
    model.add(Dense(n_classes, activation = 'softmax',activity_regularizer=keras.regularizers.l2()  ))
    model.compile( loss='categorical_crossentropy', optimizer=keras.optimizers.SGD(), metrics=[keras.metrics.categorical_accuracy])
    return model
mnist_net2net.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def make_teacher_model(train_data, validation_data, nb_epoch=3):
    '''Train a simple CNN as teacher model.
    '''
    model = Sequential()
    model.add(Conv2D(64, 3, 3, input_shape=input_shape,
                     border_mode='same', name='conv1'))
    model.add(MaxPooling2D(name='pool1'))
    model.add(Conv2D(64, 3, 3, border_mode='same', name='conv2'))
    model.add(MaxPooling2D(name='pool2'))
    model.add(Flatten(name='flatten'))
    model.add(Dense(64, activation='relu', name='fc1'))
    model.add(Dense(nb_class, activation='softmax', name='fc2'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=SGD(lr=0.01, momentum=0.9),
                  metrics=['accuracy'])

    train_x, train_y = train_data
    history = model.fit(train_x, train_y, nb_epoch=nb_epoch,
                        validation_data=validation_data)
    return model, history
cgan.py 文件源码 项目:shenlan 作者: vector-1127 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def discriminator_model():
    """ return a (b, 1) logits"""
    model = Sequential()
    model.add(Convolution2D(64, 4, 4,border_mode='same',input_shape=(IN_CH*2, img_cols, img_rows)))
    model.add(BatchNormalization(mode=2))
    model.add(Activation('tanh'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Convolution2D(128, 4, 4,border_mode='same'))
    model.add(BatchNormalization(mode=2))
    model.add(Activation('tanh'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Convolution2D(512, 4, 4,border_mode='same'))
    model.add(BatchNormalization(mode=2))
    model.add(Activation('tanh'))
    model.add(Convolution2D(1, 4, 4,border_mode='same'))
    model.add(BatchNormalization(mode=2))
    model.add(Activation('tanh'))

    model.add(Activation('sigmoid'))
    return model
mnist_sklearn_wrapper.py 文件源码 项目:pCVR 作者: xjtushilei 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def make_model(dense_layer_sizes, filters, kernel_size, pool_size):
    '''Creates model comprised of 2 convolutional layers followed by dense layers

    dense_layer_sizes: List of layer sizes.
        This list has one number for each layer
    filters: Number of convolutional filters in each convolutional layer
    kernel_size: Convolutional kernel size
    pool_size: Size of pooling area for max pooling
    '''

    model = Sequential()
    model.add(Conv2D(filters, kernel_size,
                     padding='valid',
                     input_shape=input_shape))
    model.add(Activation('relu'))
    model.add(Conv2D(filters, kernel_size))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=pool_size))
    model.add(Dropout(0.25))

    model.add(Flatten())
    for layer_size in dense_layer_sizes:
        model.add(Dense(layer_size))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(num_classes))
    model.add(Activation('softmax'))

    model.compile(loss='categorical_crossentropy',
                  optimizer='adadelta',
                  metrics=['accuracy'])

    return model
mnist_net2net.py 文件源码 项目:pCVR 作者: xjtushilei 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def make_teacher_model(train_data, validation_data, epochs=3):
    '''Train a simple CNN as teacher model.
    '''
    model = Sequential()
    model.add(Conv2D(64, 3, input_shape=input_shape,
                     padding='same', name='conv1'))
    model.add(MaxPooling2D(2, name='pool1'))
    model.add(Conv2D(64, 3, padding='same', name='conv2'))
    model.add(MaxPooling2D(2, name='pool2'))
    model.add(Flatten(name='flatten'))
    model.add(Dense(64, activation='relu', name='fc1'))
    model.add(Dense(num_class, activation='softmax', name='fc2'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=SGD(lr=0.01, momentum=0.9),
                  metrics=['accuracy'])

    train_x, train_y = train_data
    history = model.fit(train_x, train_y,
                        epochs=epochs,
                        validation_data=validation_data)
    return model, history
run_me.py 文件源码 项目:Kaggle-Sea-Lions-Solution 作者: mrgloom 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_model():
    input_shape = (image_size, image_size, 3)

    model = Sequential()

    model.add(Conv2D(32, kernel_size=(3, 3), padding='same',
                     input_shape=input_shape))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(64, kernel_size=(3, 3), padding='same'))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(128, kernel_size=(3, 3), padding='same'))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(n_classes, kernel_size=(3, 3), padding='same'))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(GlobalAveragePooling2D())

    print (model.summary())
    #sys.exit(0) #

    model.compile(loss=keras.losses.mean_squared_error,
            optimizer= keras.optimizers.Adadelta())

    return model
model.py 文件源码 项目:Kiddo 作者: Subarno 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_model(input_shape, num_classes):
    model = Sequential()

    model.add(Convolution2D(6, kernel_size=(3, 3), activation='relu', input_shape=input_shape, padding="same"))
    model.add(Convolution2D(32, kernel_size=(3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Convolution2D(64, kernel_size=(3, 3), border_mode='same', activation='relu'))
    model.add(Convolution2D(64, kernel_size=(3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(num_classes, activation='softmax'))

    return model
networks.py 文件源码 项目:multi-gpu-keras-tf 作者: sallamander 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def _conv_block(layer, num_conv_layers, num_filters):
        """Build a conv block on top of inputs

        :param inputs: Keras Layer object representing the VGG net up to this
         point
        :param num_conv_layers: int for the number of convolutional layers to
         include in this block
        :param num_filters: int for the number of filters per convolutional
         layer
        """

        for _ in  range(num_conv_layers - 1):
            layer = Conv2D(
                filters=num_filters, kernel_size=(3, 3), padding='same',
                activation='relu'
            )(layer)
        layer = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(layer)

        return layer
CNNModel3.py 文件源码 项目:CCIR 作者: xiaogang00 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def cnn(height, width):
    question_input = Input(shape=(height, width, 1), name='question_input')
    conv1_Q = Conv2D(512, (2, 320), activation='sigmoid', padding='valid',
                     kernel_regularizer=regularizers.l2(0.01),
                     kernel_initializer=initializers.random_normal(mean=0.0, stddev=0.02))(question_input)
    Max1_Q = MaxPooling2D((29, 1), strides=(1, 1), padding='valid')(conv1_Q)
    F1_Q = Flatten()(Max1_Q)
    Drop1_Q = Dropout(0.25)(F1_Q)
    predictQ = Dense(32, activation='relu',
                     kernel_regularizer=regularizers.l2(0.01),
                     kernel_initializer=initializers.random_normal(mean=0.0, stddev=0.02))(Drop1_Q)
    prediction2 = Dropout(0.25)(predictQ)
    predictions = Dense(1, activation='relu')(prediction2)
    model = Model(inputs=[question_input],
                  outputs=predictions)

    model.compile(loss='mean_squared_error',
                  optimizer=Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0))
    # model.compile(loss='mean_squared_error',
    #             optimizer='nadam')
    return model
a02_zf_unet_model.py 文件源码 项目:KAGGLE_CERVICAL_CANCER_2017 作者: ZFTurbo 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def double_conv_layer(x, size, dropout, batch_norm):
    from keras.models import Model
    from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D
    from keras.layers.normalization import BatchNormalization
    from keras.layers.core import Dropout, Activation
    conv = Convolution2D(size, 3, 3, border_mode='same')(x)
    if batch_norm == True:
        conv = BatchNormalization(mode=0, axis=1)(conv)
    conv = Activation('relu')(conv)
    conv = Convolution2D(size, 3, 3, border_mode='same')(conv)
    if batch_norm == True:
        conv = BatchNormalization(mode=0, axis=1)(conv)
    conv = Activation('relu')(conv)
    if dropout > 0:
        conv = Dropout(dropout)(conv)
    return conv
conv_autoencoder.py 文件源码 项目:nuts-ml 作者: maet3608 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def create_network():
    input_img = Input(shape=INPUT_SHAPE)

    x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
    x = MaxPooling2D((2, 2), padding='same')(x)
    x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
    x = MaxPooling2D((2, 2), padding='same')(x)
    x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
    encoded = MaxPooling2D((2, 2), padding='same')(x)

    # at this point the representation is (4, 4, 8) i.e. 128-dimensional

    x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
    x = UpSampling2D((2, 2))(x)
    x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
    x = UpSampling2D((2, 2))(x)
    x = Conv2D(16, (3, 3), activation='relu')(x)
    x = UpSampling2D((2, 2))(x)
    decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

    model = Model(input_img, decoded)
    model.compile(optimizer='adadelta', loss='binary_crossentropy')
    return KerasNetwork(model, 'weights_conv_autoencoder.hd5')
cnn_train.py 文件源码 项目:nuts-ml 作者: maet3608 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def create_network():
    from keras.models import Sequential
    from keras.layers import Dense, Dropout, Flatten
    from keras.layers import Conv2D, MaxPooling2D

    model = Sequential()
    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=INPUT_SHAPE))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.25))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(NUM_CLASSES, activation='softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    return KerasNetwork(model, 'cnn_weights.hd5')
atari.py 文件源码 项目:rl 作者: Shmuma 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def net_input(env):
    """
    Create input part of the network with optional prescaling.
    :return: input_tensor, output_tensor
    """
    in_t = Input(shape=env.observation_space.shape, name='input')
    out_t = Conv2D(32, 5, 5, activation='relu', border_mode='same')(in_t)
    out_t = MaxPooling2D((2, 2))(out_t)
    out_t = Conv2D(32, 5, 5, activation='relu', border_mode='same')(out_t)
    out_t = MaxPooling2D((2, 2))(out_t)
    out_t = Conv2D(64, 4, 4, activation='relu', border_mode='same')(out_t)
    out_t = MaxPooling2D((2, 2))(out_t)
    out_t = Conv2D(64, 3, 3, activation='relu', border_mode='same')(out_t)
    out_t = Flatten(name='flat')(out_t)
    out_t = Dense(512, name='l1', activation='relu')(out_t)

    return in_t, out_t
mnist_net2net.py 文件源码 项目:NetworkCompress 作者: luzai 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def make_teacher_model(train_data, validation_data, epochs=3):
    '''Train a simple CNN as teacher model.
    '''
    model = Sequential()
    model.add(Conv2D(64, 3, input_shape=input_shape,
                     padding='same', name='conv1'))
    model.add(MaxPooling2D(2, name='pool1'))
    model.add(Conv2D(64, 3, padding='same', name='conv2'))
    model.add(MaxPooling2D(2, name='pool2'))
    model.add(Flatten(name='flatten'))
    model.add(Dense(64, activation='relu', name='fc1'))
    model.add(Dense(num_class, activation='softmax', name='fc2'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=SGD(lr=0.01, momentum=0.9),
                  metrics=['accuracy'])

    train_x, train_y = train_data
    history = model.fit(train_x, train_y,
                        epochs=epochs,
                        validation_data=validation_data)
    return model, history
training.py 文件源码 项目:Face_Recognition 作者: AkiraXD0712 项目源码 文件源码 阅读 44 收藏 0 点赞 0 评论 0
def build_model(self, dataset, nb_classes):
        self.model = Sequential()

        self.model.add(Convolution2D(32, (3, 3), padding='same', input_shape=dataset.x_train.shape[1:]))
        self.model.add(Activation('relu'))
        self.model.add(Convolution2D(32, (3, 3)))
        self.model.add(Activation('relu'))
        self.model.add(MaxPooling2D(pool_size=(2, 2)))
        self.model.add(Dropout(0.25))

        self.model.add(Convolution2D(64, (3, 3), padding='same'))
        self.model.add(Activation('relu'))
        self.model.add(Convolution2D(64, (3, 3)))
        self.model.add(Activation('relu'))
        self.model.add(MaxPooling2D(pool_size=(2, 2)))
        self.model.add(Dropout(0.25))

        self.model.add(Flatten())
        self.model.add(Dense(512))
        self.model.add(Activation('relu'))
        self.model.add(Dropout(0.5))
        self.model.add(Dense(nb_classes))
        self.model.add(Activation('softmax'))

        self.model.summary()
train-ingame-classifier.py 文件源码 项目:sc2_predictor 作者: hellno 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_model(img_channels, img_width, img_height, dropout=0.5):

    model = Sequential()
    model.add(Convolution2D(32, 3, 3, input_shape=(
        img_channels, img_width, img_height)))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Convolution2D(32, 3, 3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Convolution2D(32, 3, 3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Flatten())
    model.add(Dense(64))
    model.add(Activation('relu'))
    model.add(Dropout(dropout))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))

    return model
learn-regression.py 文件源码 项目:sc2_predictor 作者: hellno 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def get_model(shape, dropout=0.5, path=None):
    print('building neural network')

    model=Sequential()

    model.add(Convolution2D(512, 3, 3, border_mode='same', input_shape=shape))
    model.add(Activation('relu'))
    model.add(Convolution2D(512, 3, 3, border_mode='same'))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(SpatialDropout2D(dropout))

    model.add(Flatten())#input_shape=shape))
    # model.add(Dense(4096))
    # model.add(Activation('relu'))
    # model.add(Dropout(0.5))
    model.add(Dense(512))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))

    model.add(Dense(1))
    #model.add(Activation('linear'))

    return model
test_keras2_numeric.py 文件源码 项目:coremltools 作者: apple 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_tiny_mcrnn_music_tagger(self):

        x_in = Input(shape=(4,6,1))
        x = ZeroPadding2D(padding=(0, 1))(x_in)
        x = BatchNormalization(axis=2, name='bn_0_freq')(x)
        # Conv block 1
        x = Conv2D(2, (3, 3), padding='same', name='conv1')(x)
        x = BatchNormalization(axis=3, name='bn1')(x)
        x = Activation('elu')(x)
        x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name='pool1')(x)
        # Conv block 2
        x = Conv2D(4, (3, 3), padding='same', name='conv2')(x)
        x = BatchNormalization(axis=3, name='bn2')(x)
        x = Activation('elu')(x)
        x = MaxPooling2D(pool_size=(2, 2), strides=(2, 2), name='pool2')(x)

        # Should get you (1,1,2,4)
        x = Reshape((2, 4))(x)
        x = GRU(32, return_sequences=True, name='gru1')(x)
        x = GRU(32, return_sequences=False, name='gru2')(x)

        # Create model.
        model = Model(x_in, x)
        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
        self._test_keras_model(model, mode='random_zero_mean', delta=1e-2)
mnist_net2net.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def make_teacher_model(train_data, validation_data, nb_epoch=3):
    '''Train a simple CNN as teacher model.
    '''
    model = Sequential()
    model.add(Conv2D(64, 3, 3, input_shape=input_shape,
                     border_mode='same', name='conv1'))
    model.add(MaxPooling2D(name='pool1'))
    model.add(Conv2D(64, 3, 3, border_mode='same', name='conv2'))
    model.add(MaxPooling2D(name='pool2'))
    model.add(Flatten(name='flatten'))
    model.add(Dense(64, activation='relu', name='fc1'))
    model.add(Dense(nb_class, activation='softmax', name='fc2'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=SGD(lr=0.01, momentum=0.9),
                  metrics=['accuracy'])

    train_x, train_y = train_data
    history = model.fit(train_x, train_y, nb_epoch=nb_epoch,
                        validation_data=validation_data)
    return model, history
keras_functional_api.py 文件源码 项目:dsde-deep-learning 作者: broadinstitute 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def mnist_cnn(args, input_image):
    shape = (args.channels, args.height, args.width)
    x = Convolution2D(32, 5, 5, 
        activation='relu', 
        border_mode='valid', 
        input_shape=shape)(input_image)
    x = MaxPooling2D((2,2))(x)          
    x = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(x)
    x = Dropout(0.2)(x)
    x = MaxPooling2D((2,2))(x)  
    x = Flatten()(x)
    x = Dense(128, activation='relu')(x)
    x = Dense(64, activation='relu')(x)

    predictions = Dense(args.num_labels, activation='softmax')(x)

    # this creates a model that includes
    # the Input layer and three Dense layers
    model = Model(input=input_image, output=predictions)
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    model.summary()
    return model
test.py 文件源码 项目:GAKeras 作者: PetraVidnerova 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def xtest_net(self):

        input_shape = (28,28,1)

        model = Sequential()
        model.add(MaxPooling2D(pool_size=(3,3), input_shape = input_shape))
        print("----->", model.layers[-1].output_shape)
        model.add(MaxPooling2D(pool_size=(3,3)))
        print("----->", model.layers[-1].output_shape)
        model.add(MaxPooling2D(pool_size=(3,3)))
        print("----->", model.layers[-1].output_shape)

        if model.layers[-1].output_shape[1] >= 2 and model.layers[-1].output_shape[2] >= 2:
            model.add(MaxPooling2D(pool_size=(2,2)))
            print("----->", model.layers[-1].output_shape)
        model.add(Flatten())

        #model.add(Convolution2D(20, 5, 5, border_mode='same'))
        #model.add(MaxPooling2D(pool_size=(2,2)))
        #model.add(MaxPooling2D(pool_size=(2,2)))
        #model.add(MaxPooling2D(pool_size=(2,2)))
        #model.add(Flatten())

        model.summary()
inception_v4.py 文件源码 项目:cnn_finetune 作者: flyyufelix 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def block_reduction_a(input):
    if K.image_dim_ordering() == "th":
        channel_axis = 1
    else:
        channel_axis = -1

    branch_0 = conv2d_bn(input, 384, 3, 3, subsample=(2,2), border_mode='valid')

    branch_1 = conv2d_bn(input, 192, 1, 1)
    branch_1 = conv2d_bn(branch_1, 224, 3, 3)
    branch_1 = conv2d_bn(branch_1, 256, 3, 3, subsample=(2,2), border_mode='valid')

    branch_2 = MaxPooling2D((3,3), strides=(2,2), border_mode='valid')(input)

    x = merge([branch_0, branch_1, branch_2], mode='concat', concat_axis=channel_axis)
    return x
inception_v4.py 文件源码 项目:cnn_finetune 作者: flyyufelix 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def block_reduction_b(input):
    if K.image_dim_ordering() == "th":
        channel_axis = 1
    else:
        channel_axis = -1

    branch_0 = conv2d_bn(input, 192, 1, 1)
    branch_0 = conv2d_bn(branch_0, 192, 3, 3, subsample=(2, 2), border_mode='valid')

    branch_1 = conv2d_bn(input, 256, 1, 1)
    branch_1 = conv2d_bn(branch_1, 256, 1, 7)
    branch_1 = conv2d_bn(branch_1, 320, 7, 1)
    branch_1 = conv2d_bn(branch_1, 320, 3, 3, subsample=(2,2), border_mode='valid')

    branch_2 = MaxPooling2D((3, 3), strides=(2, 2), border_mode='valid')(input)

    x = merge([branch_0, branch_1, branch_2], mode='concat', concat_axis=channel_axis)
    return x
mnist_net2net_gpu.py 文件源码 项目:keras-mxnet-benchmarks 作者: sandeep-krishnamurthy 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def make_teacher_model(train_data, validation_data, nb_epoch=3):
    '''Train a simple CNN as teacher model.
    '''
    model = Sequential()
    model.add(Conv2D(64, 3, 3, input_shape=input_shape,
                     border_mode='same', name='conv1'))
    model.add(MaxPooling2D(name='pool1'))
    model.add(Conv2D(64, 3, 3, border_mode='same', name='conv2'))
    model.add(MaxPooling2D(name='pool2'))
    model.add(Flatten(name='flatten'))
    model.add(Dense(64, activation='relu', name='fc1'))
    model.add(Dense(nb_class, activation='softmax', name='fc2'))
    model = make_model(model, loss='categorical_crossentropy',
                  optimizer=SGD(lr=0.01, momentum=0.9),
                  metrics=['accuracy'])

    train_x, train_y = train_data
    history = model.fit(train_x, train_y, nb_epoch=nb_epoch,
                        validation_data=validation_data)
    return model, history
learn.py 文件源码 项目:CnnJapaneseCharacter 作者: yukoba 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def m6_1():
    model.add(Convolution2D(32, 3, 3, init=my_init, input_shape=input_shape))
    model.add(Activation('relu'))
    model.add(Convolution2D(32, 3, 3, init=my_init))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.5))

    model.add(Convolution2D(64, 3, 3, init=my_init))
    model.add(Activation('relu'))
    model.add(Convolution2D(64, 3, 3, init=my_init))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Dropout(0.5))

    model.add(Flatten())
    model.add(Dense(256, init=my_init))
    model.add(Activation('relu'))
    model.add(Dropout(0.5))
    model.add(Dense(nb_classes))
    model.add(Activation('softmax'))
CNN.py 文件源码 项目:Recognition 作者: thautwarm 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def getNN(n):
    """
    ?????????
    ???????????VGG???
    """
    nn=Sequential()
    nn.add(Convolution2D(32,(3,3),input_shape=(30,30,1),activation='relu'))
    nn.add(MaxPooling2D(pool_size=(2, 2)))
    nn.add(Convolution2D(16,(3,3),activation='relu'))
    nn.add(Dropout(0.2))
    nn.add(Convolution2D(8,(3,3),activation='relu'))
    nn.add(MaxPooling2D(pool_size=(2, 2)))
    nn.add(Convolution2D(8,(3,3),activation='relu'))
    nn.add(Dense(50,activation='tanh'))
    nn.add(Dropout(0.2))
    nn.add(Dense(50,activation='tanh'))
    nn.add(Flatten())
    nn.add(Dense(n,activation='sigmoid'))
    nn.compile(optimizer='rmsprop',loss='categorical_crossentropy')
    return nn
dual_path_network.py 文件源码 项目:Keras-DualPathNetworks 作者: titu1994 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def _initial_conv_block_inception(input, initial_conv_filters, weight_decay=5e-4):
    ''' Adds an initial conv block, with batch norm and relu for the DPN
    Args:
        input: input tensor
        initial_conv_filters: number of filters for initial conv block
        weight_decay: weight decay factor
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(initial_conv_filters, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = Activation('relu')(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x
vgg16ModelFineTuning.py 文件源码 项目:cancer_nn 作者: tanmoyopenroot 项目源码 文件源码 阅读 82 收藏 0 点赞 0 评论 0
def VGG16ConvBlockFive( pretrained_weights ):

    input_vector = Input( shape = ( 14, 14, 512 ) )

    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')( input_vector )
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)
    model = Model( input_vector, x )

    if pretrained_weights :
        print "finetuned conv_block_5 weights loading"

        model.load_weights( 'FCC-init-random-weights-on-finetuned-data.h5', by_name = True )

    return model
keras_training.py 文件源码 项目:deep_ocr 作者: JinpengLI 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, **kwargs):
        super(KerasLenetModel, self).__init__(**kwargs)
        norm_shape = self.norm_shape
        self.model = Sequential()
        self.model.add(Convolution2D(32, (3, 3), activation='relu',
                                input_shape=(norm_shape[0], norm_shape[1], 1)))
        self.model.add(Convolution2D(32, (3, 3), activation='relu'))
        self.model.add(MaxPooling2D(pool_size=(2,2)))
        self.model.add(Dropout(0.25))

        self.model.add(Flatten())
        self.model.add(Dense(128, activation='relu'))
        self.model.add(Dropout(0.5))
        self.model.add(Dense(self.max_n_label, activation='softmax'))

        # 8. Compile model
        self.model.compile(loss='categorical_crossentropy',
                      optimizer='adam',
                      metrics=['accuracy'])
owner_train.py 文件源码 项目:Girl-s-Camera 作者: SHANEGU56 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def build_model(self, dataset, nb_classes=2):
        self.model = Sequential()

        self.model.add(Convolution2D(32, 3, 3, border_mode='same', input_shape=dataset.X_train.shape[1:]))
        self.model.add(Activation('relu'))
        self.model.add(Convolution2D(32, 3, 3))
        self.model.add(Activation('relu'))
        self.model.add(MaxPooling2D(pool_size=(2, 2)))
        self.model.add(Dropout(0.25))

        self.model.add(Convolution2D(64, 3, 3, border_mode='same'))
        self.model.add(Activation('relu'))
        self.model.add(Convolution2D(64, 3, 3))
        self.model.add(Activation('relu'))
        self.model.add(MaxPooling2D(pool_size=(2, 2)))
        self.model.add(Dropout(0.25))

        self.model.add(Flatten()) # multi -> one dimension
        self.model.add(Dense(512))
        self.model.add(Activation('relu'))
        self.model.add(Dropout(0.5))
        self.model.add(Dense(nb_classes))
        self.model.add(Activation('softmax'))

        self.model.summary()


问题


面经


文章

微信
公众号

扫码关注公众号