python类Activation()的实例源码

m05a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m09a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m10a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor, subsample_factor)

    x = BatchNormalization(axis=4)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m02a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m04a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
resnet2d09d.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
resnet2d09e.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
resnet2d09f.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m02a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m04a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m05a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m09a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
m10a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor, subsample_factor)

    x = BatchNormalization(axis=4)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
resnet2d09d.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
resnet2d09e.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 63 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
resnet2d09f.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor)

    x = BatchNormalization(axis=3)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=3)(x)
    x = Activation('relu')(x)
    x = Convolution2D(nb_filters, 3, 3, subsample=(1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution2D(nb_filters, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
sd01a.py 文件源码 项目:kaggle-lung-cancer 作者: mdai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def res_block(input_tensor, nb_filters=16, block=0, subsample_factor=1):
    subsample = (subsample_factor, subsample_factor, subsample_factor)

    x = BatchNormalization(axis=4)(input_tensor)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=subsample, border_mode='same')(x)
    x = BatchNormalization(axis=4)(x)
    x = Activation('relu')(x)
    x = Convolution3D(nb_filters, 3, 3, 3, subsample=(1, 1, 1), border_mode='same')(x)

    if subsample_factor > 1:
        shortcut = Convolution3D(nb_filters, 1, 1, 1, subsample=subsample, border_mode='same')(input_tensor)
    else:
        shortcut = input_tensor

    x = merge([x, shortcut], mode='sum')
    return x
gran.py 文件源码 项目:Hotpot 作者: Liang-Qiu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def prep_model(inputs, N, s0pad, s1pad, c, granlevels=1):
    # LSTM
    lstm = LSTM(N, return_sequences=True, implementation=2, 
                   kernel_regularizer=l2(c['l2reg']), recurrent_regularizer=l2(c['l2reg']),
                   bias_regularizer=l2(c['l2reg']))
    x1 = inputs[0]
    x2 = inputs[1]
    h1 = lstm(x1)
    h2 = lstm(x2)

    W_x = Dense(N, kernel_initializer='glorot_uniform', use_bias=True, 
                   kernel_regularizer=l2(c['l2reg']))
    W_h = Dense(N, kernel_initializer='orthogonal', use_bias=True,
                   kernel_regularizer=l2(c['l2reg']))
    sigmoid = Activation('sigmoid')
    a1 = multiply([x1, sigmoid( add([W_x(x1), W_h(h1)]) )])
    a2 = multiply([x2, sigmoid( add([W_x(x2), W_h(h2)]) )])

    # Averaging
    avg = Lambda(function=lambda x: K.mean(x, axis=1),
                 output_shape=lambda shape: (shape[0], ) + shape[2:])
    gran1 = avg(a1)
    gran2 = avg(a2)

    return [gran1, gran2], N
gran.py 文件源码 项目:Hotpot 作者: Liang-Qiu 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def prep_model(inputs, N, s0pad, s1pad, c, granlevels=1):
    # LSTM
    lstm = LSTM(N, return_sequences=True, implementation=2, 
                   kernel_regularizer=l2(c['l2reg']), recurrent_regularizer=l2(c['l2reg']),
                   bias_regularizer=l2(c['l2reg']))
    x1 = inputs[0]
    x2 = inputs[1]
    h1 = lstm(x1)
    h2 = lstm(x2)

    W_x = Dense(N, kernel_initializer='glorot_uniform', use_bias=True, 
                   kernel_regularizer=l2(c['l2reg']))
    W_h = Dense(N, kernel_initializer='orthogonal', use_bias=True,
                   kernel_regularizer=l2(c['l2reg']))
    sigmoid = Activation('sigmoid')
    a1 = multiply([x1, sigmoid( add([W_x(x1), W_h(h1)]) )])
    a2 = multiply([x2, sigmoid( add([W_x(x2), W_h(h2)]) )])

    # Averaging
    avg = Lambda(function=lambda x: K.mean(x, axis=1),
                 output_shape=lambda shape: (shape[0], ) + shape[2:])
    gran1 = avg(a1)
    gran2 = avg(a2)

    return [gran1, gran2], N
train_nets.py 文件源码 项目:subtitle-synchronization 作者: AlbertoSabater 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def model_cnn(net_layers, input_shape):

    inp = Input(shape=input_shape)
    model = inp

    for cl in net_layers['conv_layers']:
        model = Conv2D(filters=cl[0], kernel_size=cl[1], activation='relu')(model)
        if cl[4]:
            model = MaxPooling2D()(model)
        if cl[2]:
            model = BatchNormalization()(model)
        if cl[3]:
            model = Dropout(0.2)(model)

    model = Flatten()(model)

    for dl in net_layers['dense_layers']:
        model = Dense(dl[0])(model)
        model = Activation('relu')(model)
        if dl[1]:
            model = BatchNormalization()(model)
        if dl[2]:
            model = Dropout(0.2)(model)

    model = Dense(1)(model)
    model = Activation('sigmoid')(model)

    model = Model(inp, model)
    return model



# %%

# LSTM architecture
# conv_layers -> [(filters, kernel_size, BatchNormaliztion, Dropout, MaxPooling)]
# dense_layers -> [(num_neurons, BatchNormaliztion, Dropout)]


问题


面经


文章

微信
公众号

扫码关注公众号