def test_dropout():
layer_test(core.Dropout,
kwargs={'p': 0.5},
input_shape=(3, 2))
layer_test(core.SpatialDropout1D,
kwargs={'p': 0.5},
input_shape=(2, 3, 4))
layer_test(core.SpatialDropout2D,
kwargs={'p': 0.5},
input_shape=(2, 3, 4, 5))
layer_test(core.SpatialDropout3D,
kwargs={'p': 0.5},
input_shape=(2, 3, 4, 5, 6))
python类SpatialDropout1D()的实例源码
def test_dropout():
layer_test(core.Dropout,
kwargs={'p': 0.5},
input_shape=(3, 2))
layer_test(core.Dropout,
kwargs={'p': 0.5, 'noise_shape': [3, 1]},
input_shape=(3, 2))
layer_test(core.SpatialDropout1D,
kwargs={'p': 0.5},
input_shape=(2, 3, 4))
layer_test(core.SpatialDropout2D,
kwargs={'p': 0.5},
input_shape=(2, 3, 4, 5))
layer_test(core.SpatialDropout3D,
kwargs={'p': 0.5},
input_shape=(2, 3, 4, 5, 6))
def test_dropout():
layer_test(core.Dropout,
kwargs={'p': 0.5},
input_shape=(3, 2))
layer_test(core.SpatialDropout1D,
kwargs={'p': 0.5},
input_shape=(2, 3, 4))
layer_test(core.SpatialDropout2D,
kwargs={'p': 0.5},
input_shape=(2, 3, 4, 5))
layer_test(core.SpatialDropout3D,
kwargs={'p': 0.5},
input_shape=(2, 3, 4, 5, 6))
def build_model(self, loss, P=None):
input = Input(shape=(self.maxlen,))
x = Embedding(self.max_features, self.embedding_dims)(input)
x = SpatialDropout1D(0.8)(x)
x = Activation('relu')(x)
x = Flatten()(x)
output = Dense(self.classes, kernel_initializer='he_normal')(x)
if loss in yes_bound:
output = BatchNormalization(axis=1)(output)
if loss in yes_softmax:
output = Activation('softmax')(output)
model = Model(inputs=input, outputs=output)
self.compile(model, loss, P)
def build_model(self, loss, P=None):
input = Input(shape=(self.maxlen,))
x = Embedding(self.max_features, self.embedding_dims)(input)
x = SpatialDropout1D(0.8)(x)
x = LSTM(self.lstm_dim, kernel_initializer='uniform')(x)
x = Dense(self.embedding_dims, kernel_initializer='he_normal')(x)
x = Dropout(0.5)(x)
x = Activation('relu')(x)
output = Dense(self.classes, kernel_initializer='he_normal')(x)
if loss in yes_bound:
output = BatchNormalization(axis=1)(output)
if loss in yes_softmax:
output = Activation('softmax')(output)
model = Model(inputs=input, outputs=output)
self.compile(model, loss, P)