python类Masking()的实例源码

test_rnn_encoder.py 文件源码 项目:yoctol-keras-layer-zoo 作者: Yoctol 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def create_model(self, rnn_layer):
        inputs = Input(shape=(self.max_length, self.feature_size))
        masked_inputs = Masking(0.0)(inputs)
        outputs = RNNEncoder(
            RNNCell(
                rnn_layer(
                    self.hidden_size
                ),
                Dense(
                    self.encoding_size
                ),
                dense_dropout=0.1
            )
        )(masked_inputs)
        model = Model(inputs, outputs)
        model.compile('sgd', 'mean_squared_error')
        return model
test_rnn_decoder.py 文件源码 项目:yoctol-keras-layer-zoo 作者: Yoctol 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def create_model(self, rnn_layer):
        inputs = Input(shape=(self.max_length, self.feature_size))
        masked_inputs = Masking(0.0)(inputs)
        encoded = RNNEncoder(
            rnn_layer(
                self.encoding_size,
            )
        )(masked_inputs)
        outputs = RNNDecoder(
            rnn_layer(
                self.feature_size,
            )
        )(encoded)
        model = Model(inputs, outputs)
        model.compile('sgd', 'mean_squared_error')
        return model
test_recurrent.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def test_masking_layer():
    ''' This test based on a previously failing issue here:
    https://github.com/fchollet/keras/issues/1567

    '''
    I = np.random.random((6, 3, 4))
    V = np.abs(np.random.random((6, 3, 5)))
    V /= V.sum(axis=-1, keepdims=True)

    model = Sequential()
    model.add(Masking(input_shape=(3, 4)))
    model.add(recurrent.LSTM(output_dim=5, return_sequences=True, unroll=False))
    model.compile(loss='categorical_crossentropy', optimizer='adam')
    model.fit(I, V, nb_epoch=1, batch_size=100, verbose=1)

    model = Sequential()
    model.add(Masking(input_shape=(3, 4)))
    model.add(recurrent.LSTM(output_dim=5, return_sequences=True, unroll=True))
    model.compile(loss='categorical_crossentropy', optimizer='adam')
    model.fit(I, V, nb_epoch=1, batch_size=100, verbose=1)
test_recurrent.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_masking_layer():
    ''' This test based on a previously failing issue here:
    https://github.com/fchollet/keras/issues/1567

    '''
    I = np.random.random((6, 3, 4))
    V = np.abs(np.random.random((6, 3, 5)))
    V /= V.sum(axis=-1, keepdims=True)

    model = Sequential()
    model.add(Masking(input_shape=(3, 4)))
    model.add(recurrent.LSTM(output_dim=5, return_sequences=True, unroll=False))
    model.compile(loss='categorical_crossentropy', optimizer='adam')
    model.fit(I, V, nb_epoch=1, batch_size=100, verbose=1)

    model = Sequential()
    model.add(Masking(input_shape=(3, 4)))
    model.add(recurrent.LSTM(output_dim=5, return_sequences=True, unroll=True))
    model.compile(loss='categorical_crossentropy', optimizer='adam')
    model.fit(I, V, nb_epoch=1, batch_size=100, verbose=1)
test_recurrent.py 文件源码 项目:keras 作者: NVIDIA 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_masking_layer():
    ''' This test based on a previously failing issue here:
    https://github.com/fchollet/keras/issues/1567

    '''
    I = np.random.random((6, 3, 4))
    V = np.abs(np.random.random((6, 3, 5)))
    V /= V.sum(axis=-1, keepdims=True)

    model = Sequential()
    model.add(Masking(input_shape=(3, 4)))
    model.add(recurrent.LSTM(output_dim=5, return_sequences=True, unroll=False))
    model.compile(loss='categorical_crossentropy', optimizer='adam')
    model.fit(I, V, nb_epoch=1, batch_size=100, verbose=1)

    model = Sequential()
    model.add(Masking(input_shape=(3, 4)))
    model.add(recurrent.LSTM(output_dim=5, return_sequences=True, unroll=True))
    model.compile(loss='categorical_crossentropy', optimizer='adam')
    model.fit(I, V, nb_epoch=1, batch_size=100, verbose=1)
neon_lstm.py 文件源码 项目:stratosphere-lstm 作者: mendozawow 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_lstm(input_shape):
    model = Sequential()
    # model.add(Masking(input_shape=input_shape, mask_value=-1.))
    model.add(Embedding(input_shape[0], 128, input_length=input_shape[1]))

    model.add(Convolution1D(nb_filter=64,
                            filter_length=5,
                            border_mode='valid',
                            activation='relu',
                            subsample_length=1))
    model.add(MaxPooling1D(pool_length=4))

    model.add(GRU(128))

    # model.add(GRU(128, return_sequences=False))
    # Add dropout if overfitting
    # model.add(Dropout(0.5))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model
dga_lstm.py 文件源码 项目:stratosphere-lstm 作者: mendozawow 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_lstm(input_shape):
    model = Sequential()
    # model.add(Masking(input_shape=input_shape, mask_value=-1.))
    model.add(Embedding(input_shape[0], 128, input_length=input_shape[1]))

    model.add(Convolution1D(nb_filter=64,
                            filter_length=5,
                            border_mode='valid',
                            activation='relu',
                            subsample_length=1))
    model.add(MaxPooling1D(pool_length=model.output_shape[1]))

    model.add(Flatten())

    model.add(Dense(128))

    # model.add(GRU(128, return_sequences=False))
    # Add dropout if overfitting
    # model.add(Dropout(0.5))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model
TrainData_PT_recur.py 文件源码 项目:DeepJet 作者: mstoye 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def base_model(input_shapes):
        from keras.layers import Input
        from keras.layers.core import Masking
        x_global  = Input(shape=input_shapes[0])
        x_charged = Input(shape=input_shapes[1])
        x_neutral = Input(shape=input_shapes[2])
        x_ptreco  = Input(shape=input_shapes[3])
        lstm_c = Masking()(x_charged)
        lstm_c = LSTM(100,go_backwards=True,implementation=2)(lstm_c)
        lstm_n = Masking()(x_neutral)
        lstm_n = LSTM(100,go_backwards=True,implementation=2)(lstm_n)
        x = concatenate( [lstm_c, lstm_n, x_global] )
        x = Dense(200, activation='relu',kernel_initializer='lecun_uniform')(x)
        x = Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
        x = Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
        x = Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
        x = Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
        x = Dense(100, activation='relu',kernel_initializer='lecun_uniform')(x)
        x = concatenate([x, x_ptreco])
        return [x_global, x_charged, x_neutral, x_ptreco], x
model_zoo.py 文件源码 项目:visual_turing_test-tutorial 作者: mateuszmalinowski 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def textual_embedding(self, language_model, mask_zero):
        """
        Note:
        * mask_zero only makes sense if embedding is learnt
        """
        if self._config.textual_embedding_dim > 0:
            print('Textual Embedding is on')
            language_model.add(Embedding(
                self._config.input_dim, 
                self._config.textual_embedding_dim, 
                mask_zero=mask_zero))
        else:
            print('Textual Embedding is off')
            language_model.add(Reshape(
                input_shape=(self._config.max_input_time_steps, self._config.input_dim),
                dims=(self._config.max_input_time_steps, self._config.input_dim)))
            if mask_zero:
                language_model.add(Masking(0))
        return language_model
model_zoo.py 文件源码 项目:visual_turing_test-tutorial 作者: mateuszmalinowski 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def textual_embedding_fixed_length(self, language_model, mask_zero):
        """
        In contrast to textual_embedding, it produces a fixed length output.
        """
        if self._config.textual_embedding_dim > 0:
            print('Textual Embedding with fixed length is on')
            language_model.add(Embedding(
                self._config.input_dim, 
                self._config.textual_embedding_dim,
                input_length=self._config.max_input_time_steps,
                mask_zero=mask_zero))
        else:
            print('Textual Embedding with fixed length is off')
            language_model.add(Reshape(
                input_shape=(self._config.max_input_time_steps, self._config.input_dim),
                dims=(self._config.max_input_time_steps, self._config.input_dim)))
            if mask_zero:
                language_model.add(Masking(0))
        return language_model
test_rnn_base.py 文件源码 项目:yoctol-keras-layer-zoo 作者: Yoctol 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_model(self, rnn_layer):
        inputs = Input(shape=(self.max_length, self.feature_size))
        masked_inputs = Masking(0.0)(inputs)
        outputs = rnn_layer(
            self.encoding_size,
            return_sequences=True
        )(masked_inputs)
        model = Model(inputs, outputs)
        model.compile('sgd', 'mean_squared_error')
        return model
test_rnn_encoder.py 文件源码 项目:yoctol-keras-layer-zoo 作者: Yoctol 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def create_model(self, rnn_layer):
        inputs = Input(shape=(self.max_length, self.feature_size))
        masked_inputs = Masking(0.0)(inputs)
        outputs = RNNEncoder(
            rnn_layer(
                self.encoding_size,
            )
        )(masked_inputs)
        model = Model(inputs, outputs)
        model.compile('sgd', 'mean_squared_error')
        return model
test_rnn_decoder.py 文件源码 项目:yoctol-keras-layer-zoo 作者: Yoctol 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def create_model(self, rnn_layer):
        inputs = Input(shape=(self.max_length, self.feature_size))
        masked_inputs = Masking(0.0)(inputs)
        encoded = RNNEncoder(
            RNNCell(
                rnn_layer(
                    self.hidden_size,
                ),
                Dense(
                    self.encoding_size
                ),
                dense_dropout=0.1
            )
        )(masked_inputs)
        outputs = RNNDecoder(
            RNNCell(
                rnn_layer(
                    self.hidden_size,
                ),
                Dense(
                    self.feature_size
                ),
                dense_dropout=0.1
            )
        )(encoded)
        model = Model(inputs, outputs)
        model.compile('sgd', 'mean_squared_error')
        return model
test_pick.py 文件源码 项目:yoctol-keras-layer-zoo 作者: Yoctol 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def create_model(self):
        inputs = Input(shape=(self.max_length, self.feature_size))
        masked_inputs = Masking(0.0)(inputs)
        encoded = RNNEncoder(
            LSTM(
                self.encoding_size,
                return_sequences=True
            )
        )(masked_inputs)
        outputs = Pick()(encoded)
        model = Model(inputs, outputs)
        model.compile('sgd', 'mean_squared_error')
        return model
test_loss_masking.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def test_masking():
    np.random.seed(1337)
    X = np.array([[[1], [1]],
                  [[0], [0]]])
    model = Sequential()
    model.add(Masking(mask_value=0, input_shape=(2, 1)))
    model.add(TimeDistributedDense(1, init='one'))
    model.compile(loss='mse', optimizer='sgd')
    y = np.array([[[1], [1]],
                  [[1], [1]]])
    loss = model.train_on_batch(X, y)
    assert loss == 0
test_core.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def test_masking():
    layer_test(core.Masking,
               kwargs={},
               input_shape=(3, 2, 3))
test_core.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def test_merge_mask_2d():
    from keras.layers import Input, merge, Masking
    from keras.models import Model

    rand = lambda *shape: np.asarray(np.random.random(shape) > 0.5, dtype='int32')

    # inputs
    input_a = Input(shape=(3,))
    input_b = Input(shape=(3,))

    # masks
    masked_a = Masking(mask_value=0)(input_a)
    masked_b = Masking(mask_value=0)(input_b)

    # three different types of merging
    merged_sum = merge([masked_a, masked_b], mode='sum')
    merged_concat = merge([masked_a, masked_b], mode='concat', concat_axis=1)
    merged_concat_mixed = merge([masked_a, input_b], mode='concat', concat_axis=1)

    # test sum
    model_sum = Model([input_a, input_b], [merged_sum])
    model_sum.compile(loss='mse', optimizer='sgd')
    model_sum.fit([rand(2, 3), rand(2, 3)], [rand(2, 3)], nb_epoch=1)

    # test concatenation
    model_concat = Model([input_a, input_b], [merged_concat])
    model_concat.compile(loss='mse', optimizer='sgd')
    model_concat.fit([rand(2, 3), rand(2, 3)], [rand(2, 6)], nb_epoch=1)

    # test concatenation with masked and non-masked inputs
    model_concat = Model([input_a, input_b], [merged_concat_mixed])
    model_concat.compile(loss='mse', optimizer='sgd')
    model_concat.fit([rand(2, 3), rand(2, 3)], [rand(2, 6)], nb_epoch=1)
residual_model.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build_main_residual_network(batch_size,
                                time_step,
                                input_dim,
                                output_dim,
                                loop_depth=15,
                                dropout=0.3):
    inp = Input(shape=(time_step,input_dim))

    # add mask for filter invalid data
    out = TimeDistributed(Masking(mask_value=0))(inp)


    out = Conv1D(128,5)(out)
    out = BatchNormalization()(out)
    out = Activation('relu')(out)

    out = first_block(out,(64,128),dropout=dropout)

    for _ in range(loop_depth):
        out = repeated_block(out,(64,128),dropout=dropout)

    # add flatten
    out = Flatten()(out)

    out = BatchNormalization()(out)
    out = Activation('relu')(out)
    out = Dense(output_dim)(out)

    model = Model(inp,out)

    model.compile(loss='mse',optimizer='adam',metrics=['mse','mae'])
    return model
residual_model.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def build_2d_main_residual_network(batch_size,
                                width,
                                height,
                                channel_size,
                                output_dim,
                                loop_depth=15,
                                dropout=0.3):
    inp = Input(shape=(width,height,channel_size))

    # add mask for filter invalid data
    out = TimeDistributed(Masking(mask_value=0))(inp)


    out = Conv2D(128,5,data_format='channels_last')(out)
    out = BatchNormalization()(out)
    out = Activation('relu')(out)

    out = first_2d_block(out,(64,128),dropout=dropout)

    for _ in range(loop_depth):
        out = repeated_2d_block(out,(64,128),dropout=dropout)

    # add flatten
    out = Flatten()(out)

    out = BatchNormalization()(out)
    out = Activation('relu')(out)
    out = Dense(output_dim)(out)

    model = Model(inp,out)

    model.compile(loss='mse',optimizer='adam',metrics=['mse','mae'])
    return model
residual_model.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def build_main_residual_network_with_lstm(batch_size,
                                time_step,
                                input_dim,
                                output_dim,
                                loop_depth=15,
                                rnn_layer_num = 2,
                                dropout=0.3):
    inp = Input(shape=(time_step,input_dim))

    # add mask for filter invalid data
    out = TimeDistributed(Masking(mask_value=0))(inp)

    # add LSTM module
    for _ in range(rnn_layer_num):
        out = LSTM(128,return_sequences=True)(out)



    out = Conv1D(128,5)(out)
    out = BatchNormalization()(out)
    out = Activation('relu')(out)

    out = first_block(out,(64,128),dropout=dropout)

    for _ in range(loop_depth):
        out = repeated_block(out,(64,128),dropout=dropout)

    # add flatten
    out = Flatten()(out)

    out = BatchNormalization()(out)
    out = Activation('relu')(out)
    out = Dense(output_dim)(out)

    model = Model(inp,out)

    model.compile(loss='mse',optimizer='adam',metrics=['mse','mae'])
    return model
residual_model.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_main_residual_network(batch_size,
                                time_step,
                                input_dim,
                                output_dim,
                                loop_depth=15,
                                dropout=0.3):
    inp = Input(shape=(time_step,input_dim))

    # add mask for filter invalid data
    out = TimeDistributed(Masking(mask_value=0))(inp)


    out = Conv1D(128,5)(out)
    out = BatchNormalization()(out)
    out = Activation('relu')(out)

    out = first_block(out,(64,128),dropout=dropout)

    for _ in range(loop_depth):
        out = repeated_block(out,(64,128),dropout=dropout)

    # add flatten
    out = Flatten()(out)

    out = BatchNormalization()(out)
    out = Activation('relu')(out)
    out = Dense(output_dim)(out)

    model = Model(inp,out)

    model.compile(loss='mse',optimizer='adam',metrics=['mse','mae'])
    return model
residual_model.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build_2d_main_residual_network(batch_size,
                                width,
                                height,
                                channel_size,
                                output_dim,
                                loop_depth=15,
                                dropout=0.3):
    inp = Input(shape=(width,height,channel_size))

    # add mask for filter invalid data
    out = TimeDistributed(Masking(mask_value=0))(inp)


    out = Conv2D(128,5,data_format='channels_last')(out)
    out = BatchNormalization()(out)
    out = Activation('relu')(out)

    out = first_2d_block(out,(64,128),dropout=dropout)

    for _ in range(loop_depth):
        out = repeated_2d_block(out,(64,128),dropout=dropout)

    # add flatten
    out = Flatten()(out)

    out = BatchNormalization()(out)
    out = Activation('relu')(out)
    out = Dense(output_dim)(out)

    model = Model(inp,out)

    model.compile(loss='mse',optimizer='adam',metrics=['mse','mae'])
    return model
model.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def build_2d_main_residual_network(batch_size,
                                width,
                                height,
                                channel_size,
                                output_dim,
                                loop_depth=15,
                                dropout=0.3):
    inp = Input(shape=(width,height,channel_size))

    # add mask for filter invalid data
    out = TimeDistributed(Masking(mask_value=0))(inp)


    out = Conv2D(128,5,data_format='channels_last')(out)
    out = BatchNormalization()(out)
    out = Activation('relu')(out)

    out = first_2d_block(out,(64,128),dropout=dropout)

    for _ in range(loop_depth):
        out = repeated_2d_block(out,(64,128),dropout=dropout)

    # add flatten
    out = Flatten()(out)

    out = BatchNormalization()(out)
    out = Activation('relu')(out)
    out = Dense(output_dim)(out)

    model = Model(inp,out)

    model.compile(loss='mse',optimizer='adam',metrics=['mse','mae'])
    return model
test_loss_masking.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_masking():
    np.random.seed(1337)
    X = np.array([[[1], [1]],
                  [[0], [0]]])
    model = Sequential()
    model.add(Masking(mask_value=0, input_shape=(2, 1)))
    model.add(TimeDistributedDense(1, init='one'))
    model.compile(loss='mse', optimizer='sgd')
    y = np.array([[[1], [1]],
                  [[1], [1]]])
    loss = model.train_on_batch(X, y)
    assert loss == 0
test_core.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def test_masking():
    layer_test(core.Masking,
               kwargs={},
               input_shape=(3, 2, 3))
test_core.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_merge_mask_2d():
    from keras.layers import Input, merge, Masking
    from keras.models import Model

    rand = lambda *shape: np.asarray(np.random.random(shape) > 0.5, dtype='int32')

    # inputs
    input_a = Input(shape=(3,))
    input_b = Input(shape=(3,))

    # masks
    masked_a = Masking(mask_value=0)(input_a)
    masked_b = Masking(mask_value=0)(input_b)

    # three different types of merging
    merged_sum = merge([masked_a, masked_b], mode='sum')
    merged_concat = merge([masked_a, masked_b], mode='concat', concat_axis=1)
    merged_concat_mixed = merge([masked_a, input_b], mode='concat', concat_axis=1)

    # test sum
    model_sum = Model([input_a, input_b], [merged_sum])
    model_sum.compile(loss='mse', optimizer='sgd')
    model_sum.fit([rand(2, 3), rand(2, 3)], [rand(2, 3)], nb_epoch=1)

    # test concatenation
    model_concat = Model([input_a, input_b], [merged_concat])
    model_concat.compile(loss='mse', optimizer='sgd')
    model_concat.fit([rand(2, 3), rand(2, 3)], [rand(2, 6)], nb_epoch=1)

    # test concatenation with masked and non-masked inputs
    model_concat = Model([input_a, input_b], [merged_concat_mixed])
    model_concat.compile(loss='mse', optimizer='sgd')
    model_concat.fit([rand(2, 3), rand(2, 3)], [rand(2, 6)], nb_epoch=1)
char_predictor.py 文件源码 项目:pushkin 作者: Koziev 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def build_model(self):
        assert self.seq_len>1
        assert len(self.alphabet.alphabet)>0
        bits_per_char = self.alphabet.nb_chars
        rnn_size = bits_per_char
        model = Sequential()
        model.add( Masking( mask_value=0, input_shape=(self.seq_len, bits_per_char), name='input_layer' ) )
        model.add( recurrent.LSTM( rnn_size, input_shape=(self.seq_len, bits_per_char), return_sequences=False ) )
        model.add( Dense( units=rnn_size, activation='sigmoid') )
        model.add( Dense( units=bits_per_char, activation='softmax', name='output_layer') )
        model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
        return model
train_lstm.py 文件源码 项目:taxi 作者: xuguanggen 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build_lstm(n_con,n_emb,vocabs_size,n_dis,emb_size,cluster_size):
    hidden_size = 800

    con = Sequential()
    con.add(Dense(input_dim=n_con,output_dim=emb_size))

    emb_list = []
    for i in range(n_emb):
        emb = Sequential()
        emb.add(Embedding(input_dim=vocabs_size[i],output_dim=emb_size,input_length=n_dis))
        emb.add(Flatten())
        emb_list.append(emb)


    in_dimension = 2
    seq = Sequential()
    seq.add(BatchNormalization(input_shape=((MAX_LENGTH,in_dimension))))
    seq.add(Masking([0]*in_dimension,input_shape=(MAX_LENGTH,in_dimension)))
    seq.add(LSTM(emb_size,return_sequences=False,input_shape=(MAX_LENGTH,in_dimension)))

    model = Sequential()
    model.add(Merge([con]+emb_list+[seq],mode='concat'))
    model.add(BatchNormalization())
    model.add(Dense(hidden_size,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(cluster_size,activation='softmax'))
    model.add(Lambda(caluate_point,output_shape=[2]))
    return model
test_loss_masking.py 文件源码 项目:keras 作者: NVIDIA 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def test_masking():
    np.random.seed(1337)
    X = np.array([[[1], [1]],
                  [[0], [0]]])
    model = Sequential()
    model.add(Masking(mask_value=0, input_shape=(2, 1)))
    model.add(TimeDistributedDense(1, init='one'))
    model.compile(loss='mse', optimizer='sgd')
    y = np.array([[[1], [1]],
                  [[1], [1]]])
    loss = model.train_on_batch(X, y)
    assert loss == 0
test_core.py 文件源码 项目:keras 作者: NVIDIA 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_masking():
    layer_test(core.Masking,
               kwargs={},
               input_shape=(3, 2, 3))


问题


面经


文章

微信
公众号

扫码关注公众号