def generator_model(noise_dim=100, aux_dim=47, model_name="generator"):
# Merge noise and auxilary inputs
gen_input = Input(shape=(noise_dim,), name="noise_input")
aux_input = Input(shape=(aux_dim,), name="auxilary_input")
x = concatenate([gen_input, aux_input], axis=-1)
# Dense Layer 1
x = Dense(10 * 100)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 10*100
# Reshape the tensors to support CNNs
x = Reshape((100, 10))(x) # shape is 100 x 10
# Conv Layer 1
x = Conv1D(filters=250, kernel_size=13, padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 100 x 250
x = UpSampling1D(size=2)(x) # output shape is 200 x 250
# Conv Layer 2
x = Conv1D(filters=100, kernel_size=13, padding='same')(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 200 x 100
x = UpSampling1D(size=2)(x) # output shape is 400 x 100
# Conv Layer 3
x = Conv1D(filters=1, kernel_size=13, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('tanh')(x) # final output shape is 400 x 1
generator_model = Model(
outputs=[x], inputs=[gen_input, aux_input], name=model_name)
return generator_model
python类UpSampling1D()的实例源码
def generator_model(): # CDNN Model
print(INPUT_LN, N_GEN_l, CODE_LN)
model = Sequential()
model.add(Convolution1D(16, 5, border_mode='same', input_shape=(CODE_LN, 1)))
model.add(Activation('relu'))
model.add(UpSampling1D(length=N_GEN_l[0]))
model.add(Convolution1D(32, 5, border_mode='same'))
model.add(Activation('relu'))
model.add(UpSampling1D(length=N_GEN_l[1]))
model.add(Convolution1D(1, 5, border_mode='same'))
model.add(Activation('tanh'))
return model
def test_upsampling_1d():
layer_test(convolutional.UpSampling1D,
kwargs={'length': 2},
input_shape=(3, 5, 4))
def test_upsampling_1d():
layer_test(convolutional.UpSampling1D,
kwargs={'length': 2},
input_shape=(3, 5, 4))
def test_upsampling_1d():
layer_test(convolutional.UpSampling1D,
kwargs={'length': 2},
input_shape=(3, 5, 4))
def generator_model_44(): # CDNN Model
model = Sequential()
model.add(Convolution1D(16, 5, border_mode='same', input_shape=(CODE_LN, 1)))
model.add(Activation('relu'))
model.add(UpSampling1D(length=4))
model.add(Convolution1D(32, 5, border_mode='same'))
model.add(Activation('relu'))
model.add(UpSampling1D(length=4))
model.add(Convolution1D(1, 5, border_mode='same'))
# model.add(Activation('relu'))
return model
def generator_model(): # CDNN Model
model = Sequential()
model.add(Convolution1D(16, 5, border_mode='same', input_shape=(CODE_LN, 1)))
model.add(Activation('relu'))
model.add(UpSampling1D(length=4))
model.add(Convolution1D(32, 5, border_mode='same'))
model.add(Activation('relu'))
model.add(UpSampling1D(length=4))
model.add(Convolution1D(1, 5, border_mode='same'))
# model.add(Activation('relu'))
return model
def generator_model_44(): # CDNN Model
model = Sequential()
model.add(Convolution1D(16, 5, border_mode='same', input_shape=(CODE_LN, 1)))
model.add(Activation('relu'))
model.add(UpSampling1D(length=4))
model.add(Convolution1D(32, 5, border_mode='same'))
model.add(Activation('relu'))
model.add(UpSampling1D(length=4))
model.add(Convolution1D(1, 5, border_mode='same'))
# model.add(Activation('relu'))
return model
def generator_model(noise_dim=100, aux_dim=47, model_name="generator"):
# Merge noise and auxilary inputs
gen_input = Input(shape=(noise_dim,), name="noise_input")
aux_input = Input(shape=(aux_dim,), name="auxilary_input")
x = merge([gen_input, aux_input], mode="concat", concat_axis=-1)
# Dense Layer 1
x = Dense(10 * 100)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 10*100
# Reshape the tensors to support CNNs
x = Reshape((100, 10))(x) # shape is 100 x 10
# Conv Layer 1
x = Convolution1D(nb_filter=250,
filter_length=13,
border_mode='same',
subsample_length=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 100 x 250
x = UpSampling1D(length=2)(x) # output shape is 200 x 250
# Conv Layer 2
x = Convolution1D(nb_filter=100,
filter_length=13,
border_mode='same',
subsample_length=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.2)(x) # output shape is 200 x 100
x = UpSampling1D(length=2)(x) # output shape is 400 x 100
# Conv Layer 3
x = Convolution1D(nb_filter=1,
filter_length=13,
border_mode='same',
subsample_length=1)(x)
x = BatchNormalization()(x)
x = Activation('tanh')(x) # final output shape is 400 x 1
generator_model = Model(
input=[gen_input, aux_input], output=[x], name=model_name)
return generator_model