python类PReLU()的实例源码

MTCNN.py 文件源码 项目:keras-mtcnn 作者: xiangrufan 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def create_Kao_Onet( weight_path = 'model48.h5'):
    input = Input(shape = [48,48,3])
    x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv1')(input)
    x = PReLU(shared_axes=[1,2],name='prelu1')(x)
    x = MaxPool2D(pool_size=3, strides=2, padding='same')(x)
    x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv2')(x)
    x = PReLU(shared_axes=[1,2],name='prelu2')(x)
    x = MaxPool2D(pool_size=3, strides=2)(x)
    x = Conv2D(64, (3, 3), strides=1, padding='valid', name='conv3')(x)
    x = PReLU(shared_axes=[1,2],name='prelu3')(x)
    x = MaxPool2D(pool_size=2)(x)
    x = Conv2D(128, (2, 2), strides=1, padding='valid', name='conv4')(x)
    x = PReLU(shared_axes=[1,2],name='prelu4')(x)
    x = Permute((3,2,1))(x)
    x = Flatten()(x)
    x = Dense(256, name='conv5') (x)
    x = PReLU(name='prelu5')(x)

    classifier = Dense(2, activation='softmax',name='conv6-1')(x)
    bbox_regress = Dense(4,name='conv6-2')(x)
    landmark_regress = Dense(10,name='conv6-3')(x)
    model = Model([input], [classifier, bbox_regress, landmark_regress])
    model.load_weights(weight_path, by_name=True)

    return model
model_batcha3c.py 文件源码 项目:batchA3C 作者: ssamot 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_network(num_actions, agent_history_length, resized_width, resized_height):
    state = tf.placeholder("float", [None, agent_history_length, resized_width, resized_height])

    inputs_v = Input(shape=(agent_history_length, resized_width, resized_height,))
    #model_v  = Permute((2, 3, 1))(inputs_v)

    model_v = Convolution2D(nb_filter=16, nb_row=8, nb_col=8, subsample=(4,4), activation='relu', border_mode='same')(inputs_v)
    model_v = Convolution2D(nb_filter=32, nb_row=4, nb_col=4, subsample=(2,2), activation='relu', border_mode='same')(model_v)
    model_v = Flatten()(model_v)
    model_v = Dense(output_dim=512)(model_v)
    model_v = PReLU()(model_v)


    action_probs = Dense(name="p", output_dim=num_actions, activation='softmax')(model_v)

    state_value = Dense(name="v", output_dim=1, activation='linear')(model_v)


    value_network = Model(input=inputs_v, output=[state_value, action_probs])


    return state, value_network
MTCNN.py 文件源码 项目:keras-mtcnn 作者: xiangrufan 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def create_Kao_Rnet (weight_path = 'model24.h5'):
    input = Input(shape=[24, 24, 3])  # change this shape to [None,None,3] to enable arbitraty shape input
    x = Conv2D(28, (3, 3), strides=1, padding='valid', name='conv1')(input)
    x = PReLU(shared_axes=[1, 2], name='prelu1')(x)
    x = MaxPool2D(pool_size=3,strides=2, padding='same')(x)

    x = Conv2D(48, (3, 3), strides=1, padding='valid', name='conv2')(x)
    x = PReLU(shared_axes=[1, 2], name='prelu2')(x)
    x = MaxPool2D(pool_size=3, strides=2)(x)

    x = Conv2D(64, (2, 2), strides=1, padding='valid', name='conv3')(x)
    x = PReLU(shared_axes=[1, 2], name='prelu3')(x)
    x = Permute((3, 2, 1))(x)
    x = Flatten()(x)
    x = Dense(128, name='conv4')(x)
    x = PReLU( name='prelu4')(x)
    classifier = Dense(2, activation='softmax', name='conv5-1')(x)
    bbox_regress = Dense(4, name='conv5-2')(x)
    model = Model([input], [classifier, bbox_regress])
    model.load_weights(weight_path, by_name=True)
    return model
encoder.py 文件源码 项目:enet-keras 作者: PavlosMelissinos 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def build(inp, dropout_rate=0.01):
    enet = initial_block(inp)
    enet = BatchNormalization(momentum=0.1)(enet)  # enet_unpooling uses momentum of 0.1, keras default is 0.99
    enet = PReLU(shared_axes=[1, 2])(enet)
    enet = bottleneck(enet, 64, downsample=True, dropout_rate=dropout_rate)  # bottleneck 1.0
    for _ in range(4):
        enet = bottleneck(enet, 64, dropout_rate=dropout_rate)  # bottleneck 1.i

    enet = bottleneck(enet, 128, downsample=True)  # bottleneck 2.0
    # bottleneck 2.x and 3.x
    for _ in range(2):
        enet = bottleneck(enet, 128)  # bottleneck 2.1
        enet = bottleneck(enet, 128, dilated=2)  # bottleneck 2.2
        enet = bottleneck(enet, 128, asymmetric=5)  # bottleneck 2.3
        enet = bottleneck(enet, 128, dilated=4)  # bottleneck 2.4
        enet = bottleneck(enet, 128)  # bottleneck 2.5
        enet = bottleneck(enet, 128, dilated=8)  # bottleneck 2.6
        enet = bottleneck(enet, 128, asymmetric=5)  # bottleneck 2.7
        enet = bottleneck(enet, 128, dilated=16)  # bottleneck 2.8
    return enet
encoder.py 文件源码 项目:enet-keras 作者: PavlosMelissinos 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def build(inp, dropout_rate=0.01):
    pooling_indices = []
    enet, indices_single = initial_block(inp)
    enet = BatchNormalization(momentum=0.1)(enet)  # enet_unpooling uses momentum of 0.1, keras default is 0.99
    enet = PReLU(shared_axes=[1, 2])(enet)
    pooling_indices.append(indices_single)
    enet, indices_single = bottleneck(enet, 64, downsample=True, dropout_rate=dropout_rate)  # bottleneck 1.0
    pooling_indices.append(indices_single)
    for _ in range(4):
        enet = bottleneck(enet, 64, dropout_rate=dropout_rate)  # bottleneck 1.i

    enet, indices_single = bottleneck(enet, 128, downsample=True)  # bottleneck 2.0
    pooling_indices.append(indices_single)
    # bottleneck 2.x and 3.x
    for _ in range(2):
        enet = bottleneck(enet, 128)  # bottleneck 2.1
        enet = bottleneck(enet, 128, dilated=2)  # bottleneck 2.2
        enet = bottleneck(enet, 128, asymmetric=5)  # bottleneck 2.3
        enet = bottleneck(enet, 128, dilated=4)  # bottleneck 2.4
        enet = bottleneck(enet, 128)  # bottleneck 2.5
        enet = bottleneck(enet, 128, dilated=8)  # bottleneck 2.6
        enet = bottleneck(enet, 128, asymmetric=5)  # bottleneck 2.7
        enet = bottleneck(enet, 128, dilated=16)  # bottleneck 2.8
    return enet, pooling_indices
co_lstm_predict_day.py 文件源码 项目:copper_price_forecast 作者: liyinwei 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def build_model():
    """
    ????
    """
    model = Sequential()

    model.add(LSTM(units=Conf.LAYERS[1], input_shape=(Conf.LAYERS[1], Conf.LAYERS[0]), return_sequences=True))
    model.add(Dropout(0.2))

    model.add(LSTM(Conf.LAYERS[2], return_sequences=False))
    model.add(Dropout(0.2))

    model.add(Dense(units=Conf.LAYERS[3]))
    # model.add(BatchNormalization(weights=None, epsilon=1e-06, momentum=0.9))
    model.add(Activation("tanh"))
    # act = PReLU(alpha_initializer='zeros', weights=None)
    # act = LeakyReLU(alpha=0.3)
    # model.add(act)

    start = time.time()
    model.compile(loss="mse", optimizer="rmsprop")
    print("> Compilation Time : ", time.time() - start)
    return model
co_lstm_predict_sequence.py 文件源码 项目:copper_price_forecast 作者: liyinwei 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def build_model():
    """
    ????
    """
    model = Sequential()

    model.add(LSTM(units=Conf.LAYERS[1], input_shape=(Conf.LAYERS[1], Conf.LAYERS[0]), return_sequences=True))
    model.add(Dropout(0.2))

    model.add(LSTM(Conf.LAYERS[2], return_sequences=False))
    model.add(Dropout(0.2))

    model.add(Dense(units=Conf.LAYERS[3]))
    # model.add(BatchNormalization(weights=None, epsilon=1e-06, momentum=0.9))
    model.add(Activation("tanh"))
    # act = PReLU(alpha_initializer='zeros', weights=None)
    # act = LeakyReLU(alpha=0.3)
    # model.add(act)

    start = time.time()
    model.compile(loss="mse", optimizer="rmsprop")
    print("> Compilation Time : ", time.time() - start)
    return model
gated_pixelcnn.py 文件源码 项目:eva 作者: israelg99 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def GatedPixelCNN(input_shape, filters, depth, latent=None, build=True):
    height, width, channels = input_shape
    palette = 256 # TODO: Make it scalable to any amount of palette.

    input_img = Input(shape=input_shape, name=str(channels)+'_channels_'+str(palette)+'_palette')

    latent_vector = None
    if latent is not None:
        latent_vector = Input(shape=(latent,), name='latent_vector')

    model = GatedCNNs(filters, depth, latent_vector)(*GatedCNN(filters, latent_vector)(input_img))

    for _ in range(2):
        model = Convolution2D(filters, 1, 1, border_mode='valid')(model)
        model = PReLU()(model)

    outs = OutChannels(*input_shape, masked=False, palette=palette)(model)

    if build:
        model = Model(input=[input_img, latent_vector] if latent is not None else input_img, output=outs)
        model.compile(optimizer=Nadam(), loss='binary_crossentropy' if channels == 1 else 'sparse_categorical_crossentropy')

    return model
pixelcnn.py 文件源码 项目:eva 作者: israelg99 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def PixelCNN(input_shape, filters, depth, build=True):
    height, width, channels = input_shape
    palette = 256 # TODO: Make it scalable to any amount of palette.

    input_img = Input(shape=input_shape, name=str(channels)+'_channels_'+str(palette)+'_palette')

    model = MaskedConvolution2D(filters, 7, 7, mask='A', border_mode='same', name='masked2d_A')(input_img)

    model = ResidualBlockList(filters, depth)(model)
    model = PReLU()(model)

    for _ in range(2):
        model = MaskedConvolution2D(filters, 1, 1, border_mode='valid')(model)
        model = PReLU()(model)

    outs = OutChannels(*input_shape, masked=True, palette=palette)(model)

    if build:
        model = Model(input=input_img, output=outs)
        model.compile(optimizer=Nadam(), loss='binary_crossentropy' if channels == 1 else 'sparse_categorical_crossentropy')

    return model
deep_mlp.py 文件源码 项目:RIDDLE 作者: jisungk 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def create_base_model(nb_features, nb_classes, learning_rate=0.02):
    model = Sequential() 

    # input layer + first hidden layer 
    model.add(Dense(512, kernel_initializer='lecun_uniform', input_shape=(nb_features,)))
    model.add(PReLU()) 
    model.add(Dropout(0.5)) 

    # additional hidden layer
    model.add(Dense(512, kernel_initializer='lecun_uniform')) 
    model.add(PReLU()) 
    model.add(Dropout(0.75)) 

    # output layer 
    model.add(Dense(nb_classes, kernel_initializer='lecun_uniform')) 
    model.add(Activation('softmax')) 

    model.compile(loss='categorical_crossentropy', 
        optimizer=Adam(lr=learning_rate), metrics=['accuracy'])  

    return model
train.py 文件源码 项目:kaggle-allstate-claims-severity 作者: alno 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def nn_mlp(input_shape, params):
    model = Sequential()

    for i, layer_size in enumerate(params['layers']):
        reg = regularizer(params)

        if i == 0:
            model.add(Dense(layer_size, init='he_normal', W_regularizer=reg, input_shape=input_shape))
        else:
            model.add(Dense(layer_size, init='he_normal', W_regularizer=reg))

        if params.get('batch_norm', False):
            model.add(BatchNormalization())

        if 'dropouts' in params:
            model.add(Dropout(params['dropouts'][i]))

        model.add(PReLU())

    model.add(Dense(1, init='he_normal'))

    return model
model_fit_history.py 文件源码 项目:Exoplanet-Artificial-Intelligence 作者: pearsonkyle 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def make_wave(maxlen):
    model = Sequential()
    # conv1
    model.add(Dense(64,input_dim=maxlen, kernel_initializer='he_normal',bias_initializer='zeros' ) )
    model.add(PRELU())
    model.add(Dropout(0.25))

    model.add(Dense(32))
    model.add(PRELU())

    model.add(Dense(8))
    model.add(PRELU())

    model.add(Dense(1))
    model.add(Activation('sigmoid'))

    SGDsolver = SGD(lr=0.1, momentum=0.25, decay=0.0001, nesterov=True)
    model.compile(loss='binary_crossentropy',
                optimizer=SGDsolver,
                metrics=['accuracy'])
    return model
train_predict_krs1.py 文件源码 项目:kaggler-template 作者: jeongyoonlee 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def nn_model(dims):
    model = Sequential()

    model.add(Dense(400, input_dim=dims, init='he_normal'))
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.4))

    model.add(Dense(200, init='he_normal'))
    model.add(PReLU())
    model.add(BatchNormalization())    
    model.add(Dropout(0.2))

    model.add(Dense(50, init='he_normal'))
    model.add(PReLU())
    model.add(BatchNormalization())    
    model.add(Dropout(0.2))

    model.add(Dense(1, init='he_normal'))
    model.compile(loss = 'mae', optimizer = 'adadelta')
    return(model)
keras_v1.py 文件源码 项目:Kaggle_Allstate 作者: sadz2201 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def nn_model():
    model = Sequential()

    model.add(Dense(400, input_dim = xtrain.shape[1], init = 'he_normal')) #400
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.4))

    model.add(Dense(120, init = 'he_normal')) #200
    model.add(PReLU())
    model.add(BatchNormalization())    
    model.add(Dropout(0.2))

    model.add(Dense(30, init = 'he_normal')) #50
    model.add(PReLU())
    model.add(BatchNormalization())    
    model.add(Dropout(0.1))                 #0.2

    model.add(Dense(1, init = 'he_normal'))
    model.compile(loss = 'mae', optimizer = 'adadelta')
    return(model)
keras_v3.py 文件源码 项目:Kaggle_Allstate 作者: sadz2201 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def nn_model():
    model = Sequential()

    model.add(Dense(425, input_dim = xtrain.shape[1], init = 'he_normal')) #425
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.4)) #0.4

    model.add(Dense(200, init = 'he_normal')) #225
    model.add(PReLU())
    model.add(BatchNormalization())    
    model.add(Dropout(0.3))                 #0.3

    model.add(Dense(40, init = 'he_normal')) #60
    model.add(PReLU())
    model.add(BatchNormalization())    
    model.add(Dropout(0.15))                 #0.1

    model.add(Dense(1, init = 'he_normal'))
    model.compile(loss = 'mae', optimizer = 'adam')
    return(model)
keras_v2.py 文件源码 项目:Kaggle_Allstate 作者: sadz2201 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def nn_model():
    model = Sequential()

    model.add(Dense(450, input_dim = xtrain.shape[1], init = 'he_normal')) #400
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.4))

    model.add(Dense(225, init = 'he_normal')) #220
    model.add(PReLU())
    model.add(BatchNormalization())    
    model.add(Dropout(0.25))                 #0.2

    model.add(Dense(60, init = 'he_normal')) #50
    model.add(PReLU())
    model.add(BatchNormalization())    
    model.add(Dropout(0.15))                 #0.1

    model.add(Dense(1, init = 'he_normal'))
    model.compile(loss = 'mae', optimizer = 'eve')
    return(model)
classification.py 文件源码 项目:crime_prediction 作者: livenb 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def create_net():
    model = Sequential()

    model.add(Dense(400, input_dim = X_train.shape[1], init = 'he_normal'))
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.4))

    model.add(Dense(200, init = 'he_normal'))
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Dense(50, init = 'he_normal'))
    model.add(PReLU())
    model.add(BatchNormalization())
    model.add(Dropout(0.2))

    model.add(Dense(output_dim=10, init = 'he_normal'))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy', optimizer='sgd',
                  metrics=['categorical_accuracy'])
    return(model)
stack_nn_model2.py 文件源码 项目:kaggle-quora-solution-8th 作者: qqgeogor 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def MLP(opt='nadam'):

    X_raw=Input(shape=(LEN_RAW_INPUT,),name='input_raw')

    fc1=BatchNormalization()(X_raw)
    fc1=Dense(512)(fc1)
    fc1=PReLU()(fc1)
    fc1=Dropout(0.25)(fc1)

    fc1=BatchNormalization()(fc1)
    fc1=Dense(256)(fc1)
    fc1=PReLU()(fc1)
    fc1=Dropout(0.15)(fc1)

    fc1=BatchNormalization()(fc1)
    auxiliary_output_dense = Dense(1, activation='sigmoid', name='aux_output_dense')(fc1)


    output_all = Dense(1,activation='sigmoid',name='output')(fc1)
    model=Model(input=X_raw,output=output_all)
    model.compile(
                optimizer=opt,
                loss = 'binary_crossentropy')
    return model
ikki_NN_1.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=310, init='he_normal'))
            model.add(LeakyReLU(alpha=.001))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=310,output_dim=252, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.5))
            model.add(Dense(input_dim=252,output_dim=128, init='he_normal'))
            model.add(LeakyReLU(alpha=.001))
            model.add(BatchNormalization())
            model.add(Dropout(0.4))
            model.add(Dense(input_dim=128,output_dim=2, init='he_normal', activation='softmax'))
            #model.add(Activation('softmax'))
            sgd = SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
ikki_NN_1.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=62, init='he_normal'))
            model.add(LeakyReLU(alpha=.001))
            model.add(Dropout(0.3))
            model.add(Dense(input_dim=62,output_dim=158, init='he_normal'))
            model.add(LeakyReLU(alpha=.001))
            model.add(Dropout(0.25))
            model.add(Dense(input_dim=158,output_dim=20, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=20,output_dim=2, init='he_normal', activation='softmax'))
            #model.add(Activation('softmax'))
            sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
ikki_NN_1.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=100, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=100,output_dim=380, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=380,output_dim=50, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=50,output_dim=20, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=20,output_dim=2, init='he_normal', activation='softmax'))    
            sgd = SGD(lr=0.01, decay=1e-10, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
ikki_NN_1.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=105, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=105,output_dim=280, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=280,output_dim=60, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=60,output_dim=20, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=20,output_dim=2, init='he_normal', activation='softmax'))    
            sgd = SGD(lr=0.01, decay=1e-10, momentum=0.99, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
ikki_NN_1.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.2, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=100, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=100,output_dim=180, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=180,output_dim=50, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.5))
            model.add(Dense(input_dim=50,output_dim=30, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=30,output_dim=2, init='he_normal', activation='softmax'))    
            sgd = SGD(lr=0.01, decay=1e-10, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
ikki_NN_1.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=100, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=100,output_dim=360, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=360,output_dim=50, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=50,output_dim=20, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=20,output_dim=2, init='he_normal', activation='softmax'))    
            sgd = SGD(lr=0.01, decay=1e-10, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
ikki_NN_1.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=110, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=110,output_dim=350, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=350,output_dim=50, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=50,output_dim=20, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=20,output_dim=2, init='he_normal', activation='softmax'))    
            sgd = SGD(lr=0.01, decay=1e-10, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
ikki_NN_1.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=110, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.3))
            model.add(Dense(input_dim=110,output_dim=300, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.5))
            model.add(Dense(input_dim=300,output_dim=60, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=60,output_dim=20, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=20,output_dim=2, init='he_normal', activation='softmax'))    
            sgd = SGD(lr=0.01, decay=1e-10, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
ikki_NN_1.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=100, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(Dropout(0.1))
            model.add(Dense(input_dim=100,output_dim=300, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=300,output_dim=50, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=50,output_dim=20, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=20,output_dim=2, init='he_normal', activation='softmax'))    
            sgd = SGD(lr=0.01, decay=1e-10, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
ikki_NN_1.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=105, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=105,output_dim=200, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=200,output_dim=60, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.5))
            model.add(Dense(input_dim=60,output_dim=20, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.1))
            model.add(Dense(input_dim=20,output_dim=2, init='he_normal', activation='softmax'))    
            sgd = SGD(lr=0.01, decay=1e-10, momentum=0.99, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
ikki_NN_1.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=140, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=140,output_dim=380, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=380,output_dim=50, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=50,output_dim=20, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=20,output_dim=2, init='he_normal', activation='softmax'))    
            sgd = SGD(lr=0.01, decay=1e-10, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
ikki_NN_1.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=100, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=100,output_dim=360, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=360,output_dim=50, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=50,output_dim=20, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.1))
            model.add(Dense(input_dim=20,output_dim=2, init='he_normal', activation='softmax'))    
            sgd = SGD(lr=0.007, decay=1e-10, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)


问题


面经


文章

微信
公众号

扫码关注公众号