def __init__(self, filters, init_normal_stddev=0.01, **kwargs):
"""Init
Parameters
----------
filters : int
Number of channel of the input feature map
init_normal_stddev : float
Normal kernel initialization
**kwargs:
Pass to superclass. See Con2D layer in Keras
"""
self.filters = filters
super(ConvOffset2D, self).__init__(
self.filters * 2, (3, 3), padding='same', use_bias=False,
kernel_initializer=RandomNormal(0, init_normal_stddev),
**kwargs
)
python类RandomNormal()的实例源码
kaggleQQCharCNNPlus.py 文件源码
项目:kaggle-quora-question-pairs
作者: voletiv
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def createBaseNetworkSmall(inputDim, inputLength):
baseNetwork = Sequential()
baseNetwork.add(Embedding(input_dim=inputDim,
output_dim=inputDim, input_length=inputLength))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
kaggleQQCharCNNPlus.py 文件源码
项目:kaggle-quora-question-pairs
作者: voletiv
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def createBaseNetworkLarge(inputDim, inputLength):
baseNetwork = Sequential()
baseNetwork.add(Embedding(input_dim=inputDim,
output_dim=inputDim, input_length=inputLength))
baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(2048, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(2048, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
kaggleQQDistRMS_CL.py 文件源码
项目:kaggle-quora-question-pairs
作者: voletiv
项目源码
文件源码
阅读 20
收藏 0
点赞 0
评论 0
def createBaseNetworkSmall(inputDim, inputLength):
baseNetwork = Sequential()
baseNetwork.add(Embedding(input_dim=inputDim,
output_dim=inputDim, input_length=inputLength))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
kaggleQQDistRMS_CL.py 文件源码
项目:kaggle-quora-question-pairs
作者: voletiv
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def createBaseNetworkLarge(inputDim, inputLength):
baseNetwork = Sequential()
baseNetwork.add(Embedding(input_dim=inputDim,
output_dim=inputDim, input_length=inputLength))
baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(2048, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(2048, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
kaggleQQSigmoid_SG_BCE.py 文件源码
项目:kaggle-quora-question-pairs
作者: voletiv
项目源码
文件源码
阅读 29
收藏 0
点赞 0
评论 0
def createBaseNetworkSmall(inputLength, inputDim):
baseNetwork = Sequential()
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', input_shape=(inputLength, inputDim),
kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
def createBaseNetworkSmall(inputDim, inputLength):
baseNetwork = Sequential()
baseNetwork.add(Embedding(input_dim=inputDim,
output_dim=inputDim, input_length=inputLength))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
def createBaseNetworkLarge(inputDim, inputLength):
baseNetwork = Sequential()
baseNetwork.add(Embedding(input_dim=inputDim,
output_dim=inputDim, input_length=inputLength))
baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(2048, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(2048, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
def createBaseNetworkSmall(inputDim, inputLength):
baseNetwork = Sequential()
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
def createBaseNetworkLarge(inputDim, inputLength):
baseNetwork = Sequential()
baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(2048, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(2048, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
testSigmoidSmaller.py 文件源码
项目:kaggle-quora-question-pairs
作者: voletiv
项目源码
文件源码
阅读 32
收藏 0
点赞 0
评论 0
def netSigmoid(inputLength, inputDim):
baseNetwork = Sequential()
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', input_shape=(inputLength, inputDim),
kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
def createBaseNetworkSmall(inputLength, inputDim):
baseNetwork = Sequential()
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', input_shape=(inputLength, inputDim),
kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
def createBaseNetworkSmall(inputDim, inputLength):
baseNetwork = Sequential()
baseNetwork.add(Embedding(input_dim=inputDim, output_dim=inputDim, input_length=inputLength))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(1024, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
def createBaseNetworkLarge(inputDim, inputLength):
baseNetwork = Sequential()
baseNetwork.add(Embedding(input_dim=inputDim, output_dim=inputDim, input_length=inputLength))
baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(1024, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(Conv1D(1024, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(mean=0.0, stddev=0.02), bias_initializer=RandomNormal(mean=0.0, stddev=0.02)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(2048, activation='relu'))
baseNetwork.add(Dropout(0.5))
baseNetwork.add(Dense(2048, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
kaggleQQ_Euc_Small.py 文件源码
项目:kaggle-quora-question-pairs
作者: voletiv
项目源码
文件源码
阅读 29
收藏 0
点赞 0
评论 0
def createBaseNetworkSmall(inputLength, inputDim):
baseNetwork = Sequential()
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', input_shape=(inputLength, inputDim),
kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(128, activation='relu'))
baseNetwork.add(Dropout(0.2))
baseNetwork.add(Dense(128, activation='relu'))
baseNetwork.add(Dropout(0.2))
return baseNetwork
def __init__(self):
self.x_dim = 784
self.name = 'mnist/dcgan/discriminator'
self.initializer = RandomNormal(mean=0.0, stddev=0.02, seed=None)
self.regularizer = regularizers.l2(2.5e-5)
def __init__(self):
self.z_dim = 100
self.x_dim = 784
self.name = 'mnist/dcgan/generator'
self.initializer = RandomNormal(mean=0.0, stddev=0.02, seed=None)
self.regularizer = regularizers.l2(2.5e-5)
def __init__(self):
self.x_dim = 784
self.name = 'mnist/dcgan/discriminator'
self.initializer = RandomNormal(mean=0.0, stddev=0.02, seed=None)
self.regularizer = regularizers.l2(2.5e-5)
def __init__(self):
self.z_dim = 100
self.x_dim = 784
self.name = 'mnist/dcgan/generator'
self.initializer = RandomNormal(mean=0.0, stddev=0.02, seed=None)
self.regularizer = regularizers.l2(2.5e-5)
kaggleQQSigmoidSplit_SG_BCE.py 文件源码
项目:kaggle-quora-question-pairs
作者: voletiv
项目源码
文件源码
阅读 19
收藏 0
点赞 0
评论 0
def createSplitBaseNetworkSmall(inputLength, inputDim):
baseNetwork = Sequential()
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', input_shape=(inputLength, inputDim),
kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
return baseNetwork
testSigmoidSmaller.py 文件源码
项目:kaggle-quora-question-pairs
作者: voletiv
项目源码
文件源码
阅读 21
收藏 0
点赞 0
评论 0
def netC256P3C256P3C256P3f128(inputLength, inputDim):
baseNetwork = Sequential()
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', input_shape=(inputLength, inputDim),
kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(128, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
testSigmoidSmaller.py 文件源码
项目:kaggle-quora-question-pairs
作者: voletiv
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def netC256P3C256P3f32(inputLength, inputDim):
baseNetwork = Sequential()
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', input_shape=(inputLength, inputDim),
kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(32, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
testSigmoidSmaller.py 文件源码
项目:kaggle-quora-question-pairs
作者: voletiv
项目源码
文件源码
阅读 22
收藏 0
点赞 0
评论 0
def netC256P3C256P3f64(inputLength, inputDim):
baseNetwork = Sequential()
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', input_shape=(inputLength, inputDim),
kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(64, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
kaggleQQSigmoidSmaller_SG_BCE.py 文件源码
项目:kaggle-quora-question-pairs
作者: voletiv
项目源码
文件源码
阅读 19
收藏 0
点赞 0
评论 0
def createBaseNetworkSmaller(inputLength, inputDim):
baseNetwork = Sequential()
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', input_shape=(inputLength, inputDim),
kernel_initializer=RandomNormal(mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 3, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Flatten())
baseNetwork.add(Dense(32, activation='relu'))
baseNetwork.add(Dropout(0.5))
return baseNetwork
def createSplitBaseNetworkSmall(inputDim, inputLength):
baseNetwork = Sequential()
baseNetwork.add(Embedding(input_dim=inputDim,
output_dim=inputDim, input_length=inputLength))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
baseNetwork.add(Conv1D(256, 7, strides=1, padding='valid', activation='relu', kernel_initializer=RandomNormal(
mean=0.0, stddev=0.05), bias_initializer=RandomNormal(mean=0.0, stddev=0.05)))
baseNetwork.add(MaxPooling1D(pool_size=3, strides=3))
return baseNetwork
def create_actor_network(self, state_size,action_dim):
print("Now we build the model")
S = Input(shape=[state_size])
h0 = Dense(HIDDEN1_UNITS, activation='relu')(S)
h1 = Dense(HIDDEN2_UNITS, activation='relu')(h0)
# ,init=lambda shape, name: RandomNormal(shape, scale=1e-4, name=name)
V = Dense(action_dim,activation='tanh')(h1)
model = Model(input=S,output=V)
return model, model.trainable_weights, S