def get_config(self):
config = {
'init': initializers.serialize(self.init),
'U_regularizer': regularizers.serialize(self.U_regularizer),
'b_start_regularizer': regularizers.serialize(self.b_start_regularizer),
'b_end_regularizer': regularizers.serialize(self.b_end_regularizer),
'U_constraint': constraints.serialize(self.U_constraint),
'b_start_constraint': constraints.serialize(self.b_start_constraint),
'b_end_constraint': constraints.serialize(self.b_end_constraint)
}
base_config = super(ChainCRF, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
python类serialize()的实例源码
def get_config(self):
config = {'init': initializers.serialize(self.init),
'activation': activations.serialize(self.activation),
'W_regularizer': regularizers.serialize(self.W_regularizer),
'b_regularizer': regularizers.serialize(self.b_regularizer),
'activity_regularizer': regularizers.serialize(self.activity_regularizer),
'W_constraint': constraints.serialize(self.W_constraint),
'b_constraint': constraints.serialize(self.b_constraint),
'bias': self.bias,
'input_dim': self.input_dim}
base_config = super(Highway, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def get_config(self):
config = {'W_regularizer': regularizers.serialize(self.W_regularizer),
'u_regularizer': regularizers.serialize(self.u_regularizer),
'b_regularizer': regularizers.serialize(self.b_regularizer),
'W_constraint': constraints.serialize(self.W_constraint),
'u_constraint': constraints.serialize(self.u_constraint),
'b_constraint': constraints.serialize(self.b_constraint),
'W_dropout': self.W_dropout,
'u_dropout': self.u_dropout,
'bias': self.bias}
base_config = super(AttentionWithContext, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
def get_config(self):
config = {
'size': self.size,
'initializer': initializers.serialize(self.initializer),
'regularizer': regularizers.serialize(self.regularizer)
}
base_config = Layer.get_config(self)
return dict(list(base_config.items()) + list(config.items()))
def _serialize_state_initializer(self):
si = self.state_initializer
if si is None:
return None
elif type(si) is list:
return list(map(initializers.serialize, si))
else:
return initializers.serialize(si)
def get_config(self):
config = {'cells': list(map(serialize, self.cells)),
'decode': self.decode,
'output_length': self.output_length,
'readout': self.readout,
'teacher_force': self.teacher_force,
'return_states': self.return_states,
'state_sync': self.state_sync,
'state_initializer': self._serialize_state_initializer(),
'readout_activation': activations.serialize(self.readout_activation)}
base_config = super(RecurrentModel, self).get_config()
config.update(base_config)
return config
def get_config(self):
config = super(DepthwiseConv2D, self).get_config()
config.pop('filters')
config.pop('kernel_initializer')
config.pop('kernel_regularizer')
config.pop('kernel_constraint')
config['depth_multiplier'] = self.depth_multiplier
config['depthwise_initializer'] = initializers.serialize(self.depthwise_initializer)
config['depthwise_regularizer'] = regularizers.serialize(self.depthwise_regularizer)
config['depthwise_constraint'] = constraints.serialize(self.depthwise_constraint)
return config
def get_config(self):
config = {'filters_simple': self.filters_simple,
'filters_complex': self.filters_complex,
'filters_temporal': self.filters_temporal,
'spatial_kernel_size': self.spatial_kernel_size,
'temporal_frequencies': self.temporal_frequencies,
'temporal_frequencies_initial_max':
self.temporal_frequencies_initial_max,
'temporal_frequencies_scaling':
self.temporal_frequencies_scaling,
'strides': self.strides,
'padding': self.padding,
'data_format': self.data_format,
'dilation_rate': self.dilation_rate,
'activation': activations.serialize(self.activation),
'use_bias': self.use_bias,
'spatial_kernel_initializer':
initializers.serialize(
self.spatial_kernel_initializer),
'temporal_kernel_initializer':
initializers.serialize(
self.temporal_kernel_initializer),
'temporal_frequencies_initializer':
initializers.serialize(
self.temporal_frequencies_initializer),
'bias_initializer':
initializers.serialize(self.bias_initializer),
'spatial_kernel_regularizer':
regularizers.serialize(
self.spatial_kernel_regularizer),
'temporal_kernel_regularizer':
regularizers.serialize(
self.temporal_kernel_regularizer),
'temporal_frequencies_regularizer':
regularizers.serialize(
self.temporal_frequencies_regularizer),
'bias_regularizer':
regularizers.serialize(self.bias_regularizer),
'activity_regularizer':
regularizers.serialize(self.activity_regularizer),
'spatial_kernel_constraint':
constraints.serialize(self.spatial_kernel_constraint),
'temporal_kernel_constraint':
constraints.serialize(self.temporal_kernel_constraint),
'temporal_frequencies_constraint':
constraints.serialize(
self.temporal_frequencies_constraint),
'bias_constraint':
constraints.serialize(self.bias_constraint)
}
base_config = super(
Convolution2DEnergy_TemporalCorrelation, self).get_config()
return dict(list(base_config.items()) + list(config.items()))