python类serialize()的实例源码

layers.py 文件源码 项目:anago 作者: Hironsan 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def get_config(self):
        config = {
            'init': initializers.serialize(self.init),
            'U_regularizer': regularizers.serialize(self.U_regularizer),
            'b_start_regularizer': regularizers.serialize(self.b_start_regularizer),
            'b_end_regularizer': regularizers.serialize(self.b_end_regularizer),
            'U_constraint': constraints.serialize(self.U_constraint),
            'b_start_constraint': constraints.serialize(self.b_start_constraint),
            'b_end_constraint': constraints.serialize(self.b_end_constraint)
        }
        base_config = super(ChainCRF, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
model_library.py 文件源码 项目:CIAN 作者: yanghanxy 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_config(self):
        config = {'init': initializers.serialize(self.init),
                  'activation': activations.serialize(self.activation),
                  'W_regularizer': regularizers.serialize(self.W_regularizer),
                  'b_regularizer': regularizers.serialize(self.b_regularizer),
                  'activity_regularizer': regularizers.serialize(self.activity_regularizer),
                  'W_constraint': constraints.serialize(self.W_constraint),
                  'b_constraint': constraints.serialize(self.b_constraint),
                  'bias': self.bias,
                  'input_dim': self.input_dim}
        base_config = super(Highway, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
model_library.py 文件源码 项目:CIAN 作者: yanghanxy 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_config(self):
        config = {'W_regularizer': regularizers.serialize(self.W_regularizer),
                  'u_regularizer': regularizers.serialize(self.u_regularizer),
                  'b_regularizer': regularizers.serialize(self.b_regularizer),
                  'W_constraint': constraints.serialize(self.W_constraint),
                  'u_constraint': constraints.serialize(self.u_constraint),
                  'b_constraint': constraints.serialize(self.b_constraint),
                  'W_dropout': self.W_dropout,
                  'u_dropout': self.u_dropout,
                  'bias': self.bias}
        base_config = super(AttentionWithContext, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))
SharedWeight.py 文件源码 项目:R-NET-in-Keras 作者: YerevaNN 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def get_config(self):
        config = {
            'size': self.size,
            'initializer': initializers.serialize(self.initializer),
            'regularizer': regularizers.serialize(self.regularizer)
        }
        base_config = Layer.get_config(self)
        return dict(list(base_config.items()) + list(config.items()))
engine.py 文件源码 项目:recurrentshop 作者: farizrahman4u 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def _serialize_state_initializer(self):
        si = self.state_initializer
        if si is None:
            return None
        elif type(si) is list:
            return list(map(initializers.serialize, si))
        else:
            return initializers.serialize(si)
engine.py 文件源码 项目:recurrentshop 作者: farizrahman4u 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_config(self):
        config = {'cells': list(map(serialize, self.cells)),
                  'decode': self.decode,
                  'output_length': self.output_length,
                  'readout': self.readout,
                  'teacher_force': self.teacher_force,
                  'return_states': self.return_states,
                  'state_sync': self.state_sync,
                  'state_initializer': self._serialize_state_initializer(),
                  'readout_activation': activations.serialize(self.readout_activation)}
        base_config = super(RecurrentModel, self).get_config()
        config.update(base_config)
        return config
mobilenet.py 文件源码 项目:yolov2 作者: datlife 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_config(self):
        config = super(DepthwiseConv2D, self).get_config()
        config.pop('filters')
        config.pop('kernel_initializer')
        config.pop('kernel_regularizer')
        config.pop('kernel_constraint')
        config['depth_multiplier'] = self.depth_multiplier
        config['depthwise_initializer'] = initializers.serialize(self.depthwise_initializer)
        config['depthwise_regularizer'] = regularizers.serialize(self.depthwise_regularizer)
        config['depthwise_constraint'] = constraints.serialize(self.depthwise_constraint)
        return config
convolutional.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_config(self):
        config = {'filters_simple': self.filters_simple,
                  'filters_complex': self.filters_complex,
                  'filters_temporal': self.filters_temporal,
                  'spatial_kernel_size': self.spatial_kernel_size,
                  'temporal_frequencies': self.temporal_frequencies,
                  'temporal_frequencies_initial_max':
                                        self.temporal_frequencies_initial_max,
                  'temporal_frequencies_scaling':
                                        self.temporal_frequencies_scaling,
                  'strides': self.strides,
                  'padding': self.padding,
                  'data_format': self.data_format,
                  'dilation_rate': self.dilation_rate,
                  'activation': activations.serialize(self.activation),
                  'use_bias': self.use_bias,
                  'spatial_kernel_initializer': 
                        initializers.serialize(
                                            self.spatial_kernel_initializer),
                  'temporal_kernel_initializer':
                        initializers.serialize(
                                            self.temporal_kernel_initializer),
                  'temporal_frequencies_initializer':
                        initializers.serialize(
                                    self.temporal_frequencies_initializer),
                  'bias_initializer': 
                        initializers.serialize(self.bias_initializer),
                  'spatial_kernel_regularizer':
                        regularizers.serialize(
                            self.spatial_kernel_regularizer),
                  'temporal_kernel_regularizer':
                        regularizers.serialize(
                            self.temporal_kernel_regularizer),
                  'temporal_frequencies_regularizer':
                        regularizers.serialize(
                            self.temporal_frequencies_regularizer),
                  'bias_regularizer':
                        regularizers.serialize(self.bias_regularizer),
                  'activity_regularizer':
                        regularizers.serialize(self.activity_regularizer),
                  'spatial_kernel_constraint':
                        constraints.serialize(self.spatial_kernel_constraint),
                  'temporal_kernel_constraint':
                        constraints.serialize(self.temporal_kernel_constraint),
                  'temporal_frequencies_constraint':
                        constraints.serialize(
                            self.temporal_frequencies_constraint),
                  'bias_constraint': 
                        constraints.serialize(self.bias_constraint)
                  }
        base_config = super(
                Convolution2DEnergy_TemporalCorrelation, self).get_config()
        return dict(list(base_config.items()) + list(config.items()))


问题


面经


文章

微信
公众号

扫码关注公众号