python类get()的实例源码

convolutional.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, filters_simple, filters_complex, nb_row, nb_col,
                 init='glorot_uniform', activation='relu', weights=None,
                 padding='valid', strides=(1, 1), data_format=K.image_data_format(),
                 kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
                 W_constraint=None, bias_constraint=None,
                 bias=True, **kwargs):

        if padding not in {'valid', 'same'}:
            raise Exception('Invalid border mode for Convolution2DEnergy:', padding)
        self.filters_simple = filters_simple
        self.filters_complex = filters_complex
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.init = initializers.get(init, data_format=data_format)
        self.activation = activations.get(activation)
        assert padding in {'valid', 'same'}, 'padding must be in {valid, same}'
        self.padding = padding
        self.strides = tuple(strides)
        assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {tf, th}'
        self.data_format = data_format

        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.UnitNormOrthogonal(filters_complex, data_format)
        self.bias_constraint = constraints.get(bias_constraint)

        self.bias = bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights
        super(Convolution2DEnergy, self).__init__(**kwargs)
convolutional.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, rank,
                 kernel_size=3,
                 data_format=None,
                 kernel_initialization=.1,
                 bias_initialization=1,
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super(_ConvGDN, self).__init__(**kwargs)
        self.rank = rank
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size')
        self.strides = conv_utils.normalize_tuple(1, rank, 'strides')
        self.padding = conv_utils.normalize_padding('same')
        self.data_format = conv_utils.normalize_data_format(data_format)
        self.dilation_rate = conv_utils.normalize_tuple(1, rank, 'dilation_rate')
        self.kernel_initializer = initializers.Constant(kernel_initialization)
        self.bias_initializer = initializers.Constant(bias_initialization)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.input_spec = InputSpec(ndim=self.rank + 2)
convolutional.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, filters,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=kconstraints.NonNeg(),
                 k_initializer='zeros',
                 k_regularizer=None,
                 k_constraint=None,
                 tied_k=False,
                 activity_regularizer=None,
                 strides=1,
                 padding='valid',
                 dilation_rate=1,
                 data_format=K.image_data_format(),
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(Conv2DSoftMinMax, self).__init__(**kwargs)

        self.filters = filters
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.k_initializer = initializers.get(k_initializer)
        self.k_regularizer = regularizers.get(k_regularizer)
        self.k_constraint = constraints.get(k_constraint)
        self.tied_k = tied_k
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
        self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2, 'dilation_rate')
        self.padding = conv_utils.normalize_padding(padding)
        self.input_spec = InputSpec(min_ndim=2)
        self.data_format = data_format
        self.supports_masking = True
advanced_activations.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, init='one', power_init=1, weights=None, axis=-1, fit=True, **kwargs):
        self.supports_masking = True
        self.init = initializations.get(init)
        self.initial_weights = weights
        self.axis = axis
        self.power_init = power_init
        self.fit = fit
        super(PowerReLU, self).__init__(**kwargs)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, quadratic_filters_ex=2, quadratic_filters_sup=2, W_quad_ex_initializer='glorot_uniform',
                 W_quad_sup_initializer='glorot_uniform', W_lin_initializer='glorot_uniform',
                 W_quad_ex_regularizer=None, W_quad_sup_regularizer=None, W_lin_regularizer=None,
                 W_quad_ex_constraint=None, W_quad_sup_constraint=None, W_lin_constraint=None,
                 **kwargs):

        self.quadratic_filters_ex = quadratic_filters_ex
        self.quadratic_filters_sup = quadratic_filters_sup

        self.W_quad_ex_initializer = initializers.get(W_quad_ex_initializer)
        self.W_quad_sup_initializer = initializers.get(W_quad_sup_initializer)
        self.W_lin_initializer = initializers.get(W_lin_initializer)

        self.W_quad_ex_constraint = constraints.get(W_quad_ex_constraint)
        self.W_quad_sup_constraint = constraints.get(W_quad_sup_constraint)
        self.W_lin_constraint = constraints.get(W_lin_constraint)

        self.W_quad_ex_regularizer = regularizers.get(W_quad_ex_regularizer)
        self.W_quad_sup_regularizer = regularizers.get(W_quad_sup_regularizer)
        self.W_lin_regularizer = regularizers.get(W_lin_regularizer)

        self.input_spec = [InputSpec(ndim=2)]

        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(RustSTC, self).__init__(**kwargs)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, weights=None, kernel_initializer='glorot_uniform',
                 alpha_initializer='ones', alpha_regularizer=None, alpha_constraint=None,
                 beta_delta_initializer='ones', beta_delta_regularizer=None, beta_delta_constraint=None,
                 gamma_eta_initializer='ones', gamma_eta_regularizer=None, gamma_eta_constraint=None,
                 rho_initializer='ones', rho_regularizer=None, rho_constraint=None,
                 **kwargs):

        self.alpha_initializer = initializers.get(alpha_initializer)
        self.beta_delta_initializer = initializers.get(beta_delta_initializer)
        self.gamma_eta_initializer = initializers.get(gamma_eta_initializer)
        self.rho_initializer = initializers.get(rho_initializer)

        self.alpha_constraint = constraints.get(alpha_constraint)
        self.beta_delta_constraint = constraints.get(beta_delta_constraint)
        self.gamma_eta_constraint = constraints.get(gamma_eta_constraint)
        self.rho_constraint = constraints.get(rho_constraint)

        self.alpha_regularizer = regularizers.get(alpha_regularizer)
        self.beta_delta_regularizer = regularizers.get(beta_delta_regularizer)
        self.gamma_eta_regularizer = regularizers.get(gamma_eta_regularizer)
        self.rho_regularizer = regularizers.get(rho_regularizer)

        self.input_spec = [InputSpec(ndim=2)]

        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(NakaRushton, self).__init__(**kwargs)
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, filters,
                 sum_axes,
                 filter_axes,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_activation=None,
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(FilterDims, self).__init__(**kwargs)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.activation = activations.get(activation)
        self.kernel_activation = activations.get(kernel_activation)
        self.filters = filters
        self.sum_axes = list(sum_axes)
        self.sum_axes.sort()
        self.filter_axes = list(filter_axes)
        self.filter_axes.sort()
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.use_bias = use_bias
        self.input_spec = InputSpec(min_ndim=2)
        self.supports_masking = True
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, filters_simple,
                 filters_complex,
                 sum_axes,
                 filter_axes,
                 activation='relu',
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_activation=None,
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(FilterDimsV1, self).__init__(**kwargs)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.activation = activations.get(activation)
        self.kernel_activation = activations.get(kernel_activation)
        self.filters_simple = filters_simple
        self.filters_complex = filters_complex
        self.sum_axes = list(sum_axes)
        self.sum_axes.sort()
        self.filter_axes = list(filter_axes)
        self.filter_axes.sort()
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = kconstraints.UnitNormOrthogonal(self.filters_complex)
        self.bias_constraint = constraints.get(bias_constraint)
        self.use_bias = use_bias
        self.input_spec = InputSpec(min_ndim=2)
        self.supports_masking = True
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, num_components, init='glorot_uniform', weights=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim
        self.input_dim = input_dim
        self.num_components = num_components

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=2)]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(Dense, self).__init__(**kwargs)
attlayer.py 文件源码 项目:DeepMoji 作者: bfelbo 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, return_attention=False, **kwargs):
        self.init = initializers.get('uniform')
        self.supports_masking = True
        self.return_attention = return_attention
        super(AttentionWeightedAverage, self).__init__(** kwargs)
graph_convolution.py 文件源码 项目:graph_cnn 作者: hechtlinger 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, 
                 filters, 
                 num_neighbors,
                 neighbors_ix_mat, 
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None, 
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,                 
                 **kwargs):

        if K.backend() != 'theano':
            raise Exception("GraphConv Requires Theano Backend.")

        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
           kwargs['input_shape'] = (kwargs.pop('input_dim'),)

        super(GraphConv, self).__init__(**kwargs)        

        self.filters = filters     
        self.num_neighbors = num_neighbors
        self.neighbors_ix_mat = neighbors_ix_mat

        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.input_spec = InputSpec(ndim=3)
FixedBatchNormalization.py 文件源码 项目:Gene-prediction 作者: sriram2093 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, epsilon=1e-3, axis=-1,
                 weights=None, beta_init='zero', gamma_init='one',
                 gamma_regularizer=None, beta_regularizer=None, **kwargs):

        self.supports_masking = True
        self.beta_init = initializers.get(beta_init)
        self.gamma_init = initializers.get(gamma_init)
        self.epsilon = epsilon
        self.axis = axis
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.initial_weights = weights
        super(FixedBatchNormalization, self).__init__(**kwargs)
custom_recurrents.py 文件源码 项目:keras-attention 作者: datalogue 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def get_initial_state(self, inputs):
        print('inputs shape:', inputs.get_shape())

        # apply the matrix on the first time step to get the initial s0.
        s0 = activations.tanh(K.dot(inputs[:, 0], self.W_s))

        # from keras.layers.recurrent to initialize a vector of (batchsize,
        # output_dim)
        y0 = K.zeros_like(inputs)  # (samples, timesteps, input_dims)
        y0 = K.sum(y0, axis=(1, 2))  # (samples, )
        y0 = K.expand_dims(y0)  # (samples, 1)
        y0 = K.tile(y0, [1, self.output_dim])

        return [y0, s0]
scale_layer.py 文件源码 项目:cnn_finetune 作者: flyyufelix 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, weights=None, axis=-1, momentum = 0.9, beta_init='zero', gamma_init='one', **kwargs):
        self.momentum = momentum
        self.axis = axis
        self.beta_init = initializations.get(beta_init)
        self.gamma_init = initializations.get(gamma_init)
        self.initial_weights = weights
        super(Scale, self).__init__(**kwargs)
LSTMCNN.py 文件源码 项目:kchar 作者: jarfo 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self,
                 init='glorot_uniform',
                 activation=None,
                 weights=None,
                 W_regularizer=None,
                 b_regularizer=None,
                 activity_regularizer=None,
                 W_constraint=None,
                 b_constraint=None,
                 bias=True,
                 input_dim=None,
                 **kwargs):

        self.init = initializers.get(init)
        self.activation = activations.get(activation)

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = InputSpec(ndim=2)

        self.input_dim = input_dim
        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(Highway, self).__init__(**kwargs)
graph.py 文件源码 项目:keras-gcn 作者: tkipf 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, support=1, init='glorot_uniform',
                 activation='linear', weights=None, W_regularizer=None,
                 b_regularizer=None, bias=False, **kwargs):
        self.init = initializers.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim  # number of features per node
        self.support = support  # filter support / number of weights

        assert support >= 1

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.bias = bias
        self.initial_weights = weights

        # these will be defined during build()
        self.input_dim = None
        self.W = None
        self.b = None

        super(GraphConvolution, self).__init__(**kwargs)

    # def get_output_shape_for(self, input_shapes):
    #     features_shape = input_shapes[0]
    #     output_shape = (features_shape[0], self.output_dim)
    #     return output_shape  # (batch_size, output_dim)
custom_layers.py 文件源码 项目:head-segmentation 作者: szywind 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, weights=None, axis=-1, momentum=0.9, beta_init='zero', gamma_init='one', **kwargs):
        self.momentum = momentum
        self.axis = axis
        self.beta_init = initializations.get(beta_init)
        self.gamma_init = initializations.get(gamma_init)
        self.initial_weights = weights
        super(Scale, self).__init__(**kwargs)
Scale.py 文件源码 项目:zhihu-machine-learning-challenge-2017 作者: HouJP 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, 
                 kernel_initializer=initializers.Constant(1.0),
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 bias_initializer='zeros',
                 bias_regularizer=None,
                 bias_constraint=None,
                 **kwargs):
        super(Scale, self).__init__(**kwargs)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_initializer = initializers.get(bias_initializer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.bias_constraint = constraints.get(bias_constraint)
AttLayer.py 文件源码 项目:kaggle-quora-solution-8th 作者: qqgeogor 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, step_dim,
                 W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):
        """
        Keras Layer that implements an Attention mechanism for temporal data.
        Supports Masking.
        Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
        # Input shape
            3D tensor with shape: `(samples, steps, features)`.
        # Output shape
            2D tensor with shape: `(samples, features)`.
        :param kwargs:
        Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
        The dimensions are inferred based on the output shape of the RNN.
        Example:
            model.add(LSTM(64, return_sequences=True))
            model.add(Attention(step_dim))
        """
        self.supports_masking = True
        # self.init = initializations.get('glorot_uniform')
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.step_dim = step_dim
        self.features_dim = 0
        super(Attention, self).__init__(**kwargs)
mf_lstm_att_sia_self.py 文件源码 项目:kaggle-quora-solution-8th 作者: qqgeogor 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, step_dim,
                 W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):
        """
        Keras Layer that implements an Attention mechanism for temporal data.
        Supports Masking.
        Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
        # Input shape
            3D tensor with shape: `(samples, steps, features)`.
        # Output shape
            2D tensor with shape: `(samples, features)`.
        :param kwargs:
        Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
        The dimensions are inferred based on the output shape of the RNN.
        Example:
            model.add(LSTM(64, return_sequences=True))
            model.add(Attention())
        """
        self.supports_masking = True
        #self.init = initializations.get('glorot_uniform')
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.step_dim = step_dim
        self.features_dim = 0
        super(Attention, self).__init__(**kwargs)


问题


面经


文章

微信
公众号

扫码关注公众号