python类get()的实例源码

SparseFullyConnectedLayer.py 文件源码 项目:MatchZoo 作者: faneshion 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, init='glorot_uniform', activation='relu',weights=None,
            W_regularizer=None, b_regularizer=None, activity_regularizer=None,
            W_constraint=None, b_constraint=None, input_dim=None, **kwargs):
        self.W_initializer = initializers.get(init)
        self.b_initializer = initializers.get('zeros')
        self.activation = activations.get(activation)
        self.output_dim = output_dim
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)
        self.initial_weights = weights
        self.input_spec = InputSpec(ndim=2)

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(SparseFullyConnectedLayer, self).__init__(**kwargs)
renormalization.py 文件源码 项目:DeepTrade_keras 作者: happynoom 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, epsilon=1e-3, mode=0, axis=-1, momentum=0.99,
                 r_max_value=3., d_max_value=5., t_delta=1., weights=None, beta_init='zero',
                 gamma_init='one', gamma_regularizer=None, beta_regularizer=None,
                 **kwargs):
        self.supports_masking = True
        self.beta_init = initializers.get(beta_init)
        self.gamma_init = initializers.get(gamma_init)
        self.epsilon = epsilon
        self.mode = mode
        self.axis = axis
        self.momentum = momentum
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.initial_weights = weights
        self.r_max_value = r_max_value
        self.d_max_value = d_max_value
        self.t_delta = t_delta
        if self.mode == 0:
            self.uses_learning_phase = True
        super(BatchRenormalization, self).__init__(**kwargs)
advanced_activations.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, alpha_initializer=0.2,
                 beta_initializer=5.0,
                 alpha_regularizer=None,
                 alpha_constraint=None,
                 beta_regularizer=None,
                 beta_constraint=None,
                 shared_axes=None,
                 **kwargs):
        super(ParametricSoftplus, self).__init__(**kwargs)
        self.supports_masking = True
        self.alpha_initializer = initializers.get(alpha_initializer)
        self.alpha_regularizer = regularizers.get(alpha_regularizer)
        self.alpha_constraint = constraints.get(alpha_constraint)
        self.beta_initializer = initializers.get(beta_initializer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.beta_constraint = constraints.get(beta_constraint)
        if shared_axes is None:
            self.shared_axes = None
        elif not isinstance(shared_axes, (list, tuple)):
            self.shared_axes = [shared_axes]
        else:
            self.shared_axes = list(shared_axes)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, filters,
                 centers_initializer='zeros',
                 centers_regularizer=None,
                 centers_constraint=None,
                 stds_initializer='ones',
                 stds_regularizer=None,
                 stds_constraint=None,
                 gauss_scale=100,
                 **kwargs):
        self.filters = filters
        self.gauss_scale = gauss_scale
        super(GaussianReceptiveFields, self).__init__(**kwargs)
        self.centers_initializer = initializers.get(centers_initializer)
        self.stds_initializer = initializers.get(stds_initializer)
        self.centers_regularizer = regularizers.get(centers_regularizer)
        self.stds_regularizer = regularizers.get(stds_regularizer)
        self.centers_constraint = constraints.get(centers_constraint)
        self.stds_constraint = constraints.get(stds_constraint)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, quadratic_filters=2, init='glorot_uniform', weights=None,
                 W_quad_regularizer=None, W_lin_regularizer=None, activity_regularizer=None,
                 W_quad_constraint=None, W_lin_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.quadratic_filters = quadratic_filters
        self.input_dim = input_dim

        self.W_quad_regularizer = regularizers.get(W_quad_regularizer)
        self.W_lin_regularizer = regularizers.get(W_lin_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_quad_constraint = constraints.get(W_quad_constraint)
        self.W_lin_constraint = constraints.get(W_lin_constraint)

        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=2)]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(GQM, self).__init__(**kwargs)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, quadratic_filters=2, init='glorot_uniform', weights=None,
                 W_quad_regularizer=None, W_lin_regularizer=None, activity_regularizer=None,
                 W_quad_constraint=None, W_lin_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.quadratic_filters = quadratic_filters
        self.input_dim = input_dim

        self.W_quad_regularizer = regularizers.get(W_quad_regularizer)
        self.W_lin_regularizer = regularizers.get(W_lin_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_quad_constraint = constraints.get(W_quad_constraint)
        self.W_lin_constraint = constraints.get(W_lin_constraint)

        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=5)]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(GQM_conv, self).__init__(**kwargs)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, quadratic_filters=2, init='glorot_uniform', weights=None,
                 W_quad_regularizer=None, W_lin_regularizer=None, activity_regularizer=None,
                 W_quad_constraint=None, W_lin_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.quadratic_filters = quadratic_filters
        self.input_dim = input_dim

        self.W_quad_regularizer = regularizers.get(W_quad_regularizer)
        self.W_lin_regularizer = regularizers.get(W_lin_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_quad_constraint = constraints.get(W_quad_constraint)
        self.W_lin_constraint = constraints.get(W_lin_constraint)

        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=5)]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(GQM_4D, self).__init__(**kwargs)
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, units,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=constraints.NonNeg(),
                 k_initializer='zeros',
                 k_regularizer=None,
                 k_constraint=None,
                 tied_k=False,
                 activity_regularizer=None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(SoftMinMax, self).__init__(**kwargs)

        self.units = units
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.k_initializer = initializers.get(k_initializer)
        self.k_regularizer = regularizers.get(k_regularizer)
        self.k_constraint = constraints.get(k_constraint)
        self.tied_k = tied_k
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.input_spec = InputSpec(min_ndim=2)
        self.supports_masking = True
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, init='glorot_uniform',
                 activation=None, weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim='2+')]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(DenseNonNeg, self).__init__(**kwargs)
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, init='glorot_uniform',
                 activation=None, weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim='2+')]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(Feedback, self).__init__(**kwargs)
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, init='glorot_uniform',
                 activation=None, weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim='2+')]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(DivisiveNormalization, self).__init__(**kwargs)
ChainCRF.py 文件源码 项目:SGAITagger 作者: zhiweiuu 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, init='glorot_uniform',
                 U_regularizer=None, b_start_regularizer=None, b_end_regularizer=None,
                 U_constraint=None, b_start_constraint=None, b_end_constraint=None,
                 weights=None,
                 **kwargs):
        self.supports_masking = True
        self.uses_learning_phase = True
        self.input_spec = [InputSpec(ndim=3)]
        self.init = initializations.get(init)

        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_start_regularizer = regularizers.get(b_start_regularizer)
        self.b_end_regularizer = regularizers.get(b_end_regularizer)
        self.U_constraint = constraints.get(U_constraint)
        self.b_start_constraint = constraints.get(b_start_constraint)
        self.b_end_constraint = constraints.get(b_end_constraint)

        self.initial_weights = weights

        super(ChainCRF, self).__init__(**kwargs)
renormalization.py 文件源码 项目:LIE 作者: EmbraceLife 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, epsilon=1e-3, mode=0, axis=-1, momentum=0.99,
                 r_max_value=3., d_max_value=5., t_delta=1., weights=None, beta_init='zero',
                 gamma_init='one', gamma_regularizer=None, beta_regularizer=None,
                 **kwargs):
        self.supports_masking = True
        self.beta_init = initializers.get(beta_init)
        self.gamma_init = initializers.get(gamma_init)
        self.epsilon = epsilon
        self.mode = mode
        self.axis = axis
        self.momentum = momentum
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.initial_weights = weights
        self.r_max_value = r_max_value
        self.d_max_value = d_max_value
        self.t_delta = t_delta
        if self.mode == 0:
            self.uses_learning_phase = True
        super(BatchRenormalization, self).__init__(**kwargs)
discrimination.py 文件源码 项目:Keras-GAN-Animeface-Character 作者: forcecore 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, nb_kernels, kernel_dim, init='glorot_uniform', weights=None,
                 W_regularizer=None, activity_regularizer=None,
                 W_constraint=None, input_dim=None, **kwargs):
        self.init = initializers.get(init)
        self.nb_kernels = nb_kernels
        self.kernel_dim = kernel_dim
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)

        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=2)]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(MinibatchDiscrimination, self).__init__(**kwargs)
layers.py 文件源码 项目:anago 作者: Hironsan 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, init='glorot_uniform',
                 U_regularizer=None,
                 b_start_regularizer=None,
                 b_end_regularizer=None,
                 U_constraint=None,
                 b_start_constraint=None,
                 b_end_constraint=None,
                 weights=None,
                 **kwargs):
        super(ChainCRF, self).__init__(**kwargs)
        self.init = initializers.get(init)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_start_regularizer = regularizers.get(b_start_regularizer)
        self.b_end_regularizer = regularizers.get(b_end_regularizer)
        self.U_constraint = constraints.get(U_constraint)
        self.b_start_constraint = constraints.get(b_start_constraint)
        self.b_end_constraint = constraints.get(b_end_constraint)

        self.initial_weights = weights

        self.supports_masking = True
        self.uses_learning_phase = True
        self.input_spec = [InputSpec(ndim=3)]
model_library.py 文件源码 项目:CIAN 作者: yanghanxy 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self,
                 W_regularizer=None, u_regularizer=None, b_regularizer=None,
                 W_constraint=None, u_constraint=None, b_constraint=None,
                 W_dropout=0., u_dropout=0., bias=True, **kwargs):

        self.supports_masking = True
        self.W_init = initializers.get('orthogonal')
        self.u_init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.u_regularizer = regularizers.get(u_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.u_constraint = constraints.get(u_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.W_dropout = min(1., max(0., W_dropout))
        self.u_dropout = min(1., max(0., u_dropout))

        self.bias = bias

        super(AttentionWithContext, self).__init__(**kwargs)
engine.py 文件源码 项目:recurrentshop 作者: farizrahman4u 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, state_sync=False, decode=False, output_length=None, return_states=False, readout=False, readout_activation='linear', teacher_force=False, state_initializer=None, **kwargs):
        self.state_sync = state_sync
        self.cells = []
        if decode and output_length is None:
            raise Exception('output_length should be specified for decoder')
        self.decode = decode
        self.output_length = output_length
        if decode:
            if output_length is None:
                raise Exception('output_length should be specified for decoder')
            kwargs['return_sequences'] = True
        self.return_states = return_states
        super(RecurrentModel, self).__init__(**kwargs)
        self.readout = readout
        self.readout_activation = activations.get(readout_activation)
        self.teacher_force = teacher_force
        self._optional_input_placeholders = {}
        if state_initializer:
            if type(state_initializer) in [list, tuple]:
                state_initializer = [initializers.get(init) if init else initializers.get('zeros') for init in state_initializer]
            else:
                state_initializer = initializers.get(state_initializer)
        self._state_initializer = state_initializer
gcnn.py 文件源码 项目:nn_playground 作者: DingKe 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, window_size=3, stride=1,
                 kernel_initializer='uniform', bias_initializer='zero',
                 activation='linear', activity_regularizer=None,
                 kernel_regularizer=None, bias_regularizer=None,
                 kernel_constraint=None, bias_constraint=None, 
                 use_bias=True, input_dim=None, input_length=None, **kwargs):
        self.output_dim = output_dim
        self.window_size = window_size
        self.strides = (stride, 1)

        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.activation = activations.get(activation)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        self.input_spec = [InputSpec(ndim=3)]
        self.input_dim = input_dim
        self.input_length = input_length
        if self.input_dim:
            kwargs['input_shape'] = (self.input_length, self.input_dim)
        super(GCNN, self).__init__(**kwargs)
qrnn.py 文件源码 项目:nn_playground 作者: DingKe 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, units, window_size=2, stride=1,
                 return_sequences=False, go_backwards=False, 
                 stateful=False, unroll=False, activation='tanh',
                 kernel_initializer='uniform', bias_initializer='zero',
                 kernel_regularizer=None, bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None, bias_constraint=None, 
                 dropout=0, use_bias=True, input_dim=None, input_length=None,
                 **kwargs):
        self.return_sequences = return_sequences
        self.go_backwards = go_backwards
        self.stateful = stateful
        self.unroll = unroll

        self.units = units 
        self.window_size = window_size
        self.strides = (stride, 1)

        self.use_bias = use_bias
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        self.dropout = dropout
        self.supports_masking = True
        self.input_spec = [InputSpec(ndim=3)]
        self.input_dim = input_dim
        self.input_length = input_length
        if self.input_dim:
            kwargs['input_shape'] = (self.input_length, self.input_dim)
        super(QRNN, self).__init__(**kwargs)
layer_norm_layers.py 文件源码 项目:nn_playground 作者: DingKe 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, axis=-1,
                 gamma_init='one', beta_init='zero',
                 gamma_regularizer=None, beta_regularizer=None,
                 epsilon=1e-6, **kwargs): 
        super(LayerNormalization, self).__init__(**kwargs)

        self.axis = to_list(axis)
        self.gamma_init = initializers.get(gamma_init)
        self.beta_init = initializers.get(beta_init)
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.epsilon = epsilon

        self.supports_masking = True
layers.py 文件源码 项目:nn_playground 作者: DingKe 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, 
                 ratio, 
                 data_format=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super(SE, self).__init__(**kwargs)

        self.ratio = ratio
        self.data_format= conv_utils.normalize_data_format(data_format)

        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.supports_masking = True
FixedBatchNormalization.py 文件源码 项目:AerialCrackDetection_Keras 作者: TTMRonald 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, epsilon=1e-3, axis=-1,
                 weights=None, beta_init='zero', gamma_init='one',
                 gamma_regularizer=None, beta_regularizer=None, **kwargs):

        self.supports_masking = True
        self.beta_init = initializers.get(beta_init)
        self.gamma_init = initializers.get(gamma_init)
        self.epsilon = epsilon
        self.axis = axis
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.initial_weights = weights
        super(FixedBatchNormalization, self).__init__(**kwargs)
word_vectors.py 文件源码 项目:keras-image-captioning 作者: danieljl 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, vocab_words, initializer):
        self._vocab_words = set(vocab_words)
        self._word_vector_of = dict()
        self._initializer = initializers.get(initializer)
word_vectors.py 文件源码 项目:keras-image-captioning 作者: danieljl 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def vectorize_words(self, words):
        vectors = []
        for word in words:
            vector = self._word_vector_of.get(word)
            vectors.append(vector)

        num_unknowns = len(filter(lambda x: x is None, vectors))
        inits = self._initializer(shape=(num_unknowns, self._embedding_size))
        inits = K.get_session().run(inits)
        inits = iter(inits)
        for i in range(len(vectors)):
            if vectors[i] is None:
                vectors[i] = next(inits)

        return np.array(vectors)
FixedBatchNormalization.py 文件源码 项目:keras-frcnn 作者: yhenon 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self, epsilon=1e-3, axis=-1,
                 weights=None, beta_init='zero', gamma_init='one',
                 gamma_regularizer=None, beta_regularizer=None, **kwargs):

        self.supports_masking = True
        self.beta_init = initializers.get(beta_init)
        self.gamma_init = initializers.get(gamma_init)
        self.epsilon = epsilon
        self.axis = axis
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.initial_weights = weights
        super(FixedBatchNormalization, self).__init__(**kwargs)
mobilenet.py 文件源码 项目:deep-learning-models 作者: fchollet 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self,
                 kernel_size,
                 strides=(1, 1),
                 padding='valid',
                 depth_multiplier=1,
                 data_format=None,
                 activation=None,
                 use_bias=True,
                 depthwise_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 depthwise_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 depthwise_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super(DepthwiseConv2D, self).__init__(
            filters=None,
            kernel_size=kernel_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            activation=activation,
            use_bias=use_bias,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer,
            bias_constraint=bias_constraint,
            **kwargs)
        self.depth_multiplier = depth_multiplier
        self.depthwise_initializer = initializers.get(depthwise_initializer)
        self.depthwise_regularizer = regularizers.get(depthwise_regularizer)
        self.depthwise_constraint = constraints.get(depthwise_constraint)
        self.bias_initializer = initializers.get(bias_initializer)
convolutional.py 文件源码 项目:keras-contrib 作者: farizrahman4u 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, filters, kernel_size,
                 kernel_initializer='glorot_uniform', activation=None, weights=None,
                 padding='valid', strides=(1, 1), data_format=None,
                 kernel_regularizer=None, bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None, bias_constraint=None,
                 use_bias=True, **kwargs):
        if data_format is None:
            data_format = K.image_data_format()
        if padding not in {'valid', 'same', 'full'}:
            raise ValueError('Invalid border mode for CosineConvolution2D:', padding)
        self.filters = filters
        self.kernel_size = kernel_size
        self.nb_row, self.nb_col = self.kernel_size
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.activation = activations.get(activation)
        self.padding = padding
        self.strides = tuple(strides)
        self.data_format = normalize_data_format(data_format)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        self.use_bias = use_bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights
        super(CosineConvolution2D, self).__init__(**kwargs)
depthwise_conv.py 文件源码 项目:MobileNetworks 作者: titu1994 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self,
                 kernel_size,
                 strides=(1, 1),
                 padding='valid',
                 depth_multiplier=1,
                 data_format=None,
                 activation=None,
                 use_bias=True,
                 depthwise_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 depthwise_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 depthwise_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super(DepthwiseConv2D, self).__init__(
            filters=None,
            kernel_size=kernel_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            activation=activation,
            use_bias=use_bias,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer,
            bias_constraint=bias_constraint,
            **kwargs)
        self.depth_multiplier = depth_multiplier
        self.depthwise_initializer = initializers.get(depthwise_initializer)
        self.depthwise_regularizer = regularizers.get(depthwise_regularizer)
        self.depthwise_constraint = constraints.get(depthwise_constraint)
        self.bias_initializer = initializers.get(bias_initializer)

        self._padding = _preprocess_padding(self.padding)
        self._strides = (1,) + self.strides + (1,)
        self._data_format = "NHWC"
utils.py 文件源码 项目:dense_tensor 作者: bstriner 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def get_initializer(initializer):
    if keras_2:
        from keras import initializers
        return initializers.get(initializer)
    else:
        from keras import initializations
        return initializations.get(initializer)
resnet152.py 文件源码 项目:resnet152 作者: adamcasson 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, weights=None, axis=-1, momentum = 0.9, beta_init='zero', gamma_init='one', **kwargs):
        self.momentum = momentum
        self.axis = axis
        self.beta_init = initializers.get(beta_init)
        self.gamma_init = initializers.get(gamma_init)
        self.initial_weights = weights
        super(Scale, self).__init__(**kwargs)


问题


面经


文章

微信
公众号

扫码关注公众号