python类get()的实例源码

generators.py 文件源码 项目:ppap 作者: unique-horn 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self,
                 input_channels,
                 output_shape,
                 num_filters,
                 hidden_dim,
                 init="glorot_uniform"):
        """
        Parameters
        ----------
        output_shape : list_like
            Size of the generated matrix (x, y)
        layer_sizes : array_like
            List of nodes in hidden layers
        init : str
            Keras initializer to use for weights
        """
        self.input_channels = input_channels
        self.num_filters = num_filters
        self.output_shape = output_shape
        self.hidden_dim = hidden_dim
        self.init = initializations.get(init)
        self.bias_init = initializations.get("zero")

        self.setup_weights()
        self.setup_output()
        self.num_param = np.prod(self.output_shape) * self.num_filters * \
                         self.input_channels
generators.py 文件源码 项目:ppap 作者: unique-horn 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self,
                 output_shape,
                 z_dim,
                 layer_sizes,
                 scale,
                 init="glorot_uniform"):
        """
        Parameters
        ----------
        output_shape : list_like
            Size of the generated matrix (x, y)
        z_dim : int
            Size of the input z vector
        layer_sizes : list_like
            List of nodes in hidden layers
        scale : float
            Scale used for generating the coordinate matrix
            (see get_coordinates* functions)
        init : str
            Keras initializer to use for weights
        """

        self.output_shape = output_shape
        self.layer_sizes = layer_sizes
        self.z_dim = z_dim
        self.init = initializations.get(init)
        self.bias_init = initializations.get("zero")
        self.scale = scale

        self.setup_weights()
        self.setup_output()
layers.py 文件源码 项目:neural-style-keras 作者: robertomest 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, epsilon=1e-5, weights=None,
                 beta_init='zero', gamma_init='one', **kwargs):
        self.beta_init = initializations.get(beta_init)
        self.gamma_init = initializations.get(gamma_init)
        self.epsilon = epsilon
        super(InstanceNormalization, self).__init__(**kwargs)
a00_custom_layers.py 文件源码 项目:KAGGLE_CERVICAL_CANCER_2017 作者: ZFTurbo 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self, weights=None, axis=-1, momentum = 0.9, beta_init='zero', gamma_init='one', **kwargs):
        self.momentum = momentum
        self.axis = axis
        self.beta_init = initializations.get(beta_init)
        self.gamma_init = initializations.get(gamma_init)
        self.initial_weights = weights
        super(Scale, self).__init__(**kwargs)
keras_extensions.py 文件源码 项目:sciDT 作者: edvisees 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, output_dim,
                 init='glorot_uniform', activation='linear', weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 input_dim=None, input_length1=None, input_length2=None, **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.activation = activations.get(activation)

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)
        self.constraints = [self.W_constraint, self.b_constraint]

        self.initial_weights = weights

        self.input_dim = input_dim
        self.input_length1 = input_length1
        self.input_length2 = input_length2
        if self.input_dim:
            kwargs['input_shape'] = (self.input_length1, self.input_length2, self.input_dim)
        self.input = K.placeholder(ndim=4)
        super(HigherOrderTimeDistributedDense, self).__init__(**kwargs)
attention.py 文件源码 项目:sciDT 作者: edvisees 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, input_shape, context='word', init='glorot_uniform', activation='tanh', weights=None, **kwargs):
    self.init = initializations.get(init)
    self.activation = activations.get(activation)
    self.context = context
    self.td1, self.td2, self.wd = input_shape
    self.initial_weights = weights
    kwargs['input_shape'] = input_shape
    super(TensorAttention, self).__init__(**kwargs)
hierarchical_softmax.py 文件源码 项目:nli_generation 作者: jstarc 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, init='glorot_uniform', **kwargs):
        self.init = initializations.get(init)
        self.output_dim = output_dim

        def hshape(n):
            from math import sqrt, ceil
            l1 = ceil(sqrt(n))
            l2 = ceil(n / l1)
            return int(l1), int(l2)

        self.n_classes, self.n_outputs_per_class = hshape(output_dim)
        super(HierarchicalSoftmax, self).__init__(**kwargs)
ConvHighway.py 文件源码 项目:HighwayNetwork 作者: trangptm 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self, nb_filter, nb_row, nb_col, transform_bias=-1,
                 init='glorot_uniform', activation='relu', weights=None,
                 border_mode='same', subsample=(1, 1), dim_ordering='th',
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):

        if border_mode not in {'valid', 'same'}:
            raise Exception('Invalid border mode for Convolution2D:', border_mode)
        self.nb_filter = nb_filter
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.transform_bias = transform_bias
        self.init = initializations.get(init, dim_ordering=dim_ordering)
        self.activation = activations.get(activation)
        assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}'
        self.border_mode = border_mode
        self.subsample = tuple(subsample)
        assert dim_ordering in {'tf', 'th'}, 'dim_ordering must be in {tf, th}'
        self.dim_ordering = dim_ordering

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights
        super(Conv2DHighway, self).__init__(**kwargs)
scale_layer.py 文件源码 项目:cnn_finetune 作者: flyyufelix 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self, weights=None, axis=-1, momentum = 0.9, beta_init='zero', gamma_init='one', **kwargs):
        self.momentum = momentum
        self.axis = axis
        self.beta_init = initializations.get(beta_init)
        self.gamma_init = initializations.get(gamma_init)
        self.initial_weights = weights
        super(Scale, self).__init__(**kwargs)
recurrent_convolutional.py 文件源码 项目:keras-prednet 作者: kunimasa-kawasaki 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, nb_filter, nb_row, nb_col,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid', dim_ordering="tf",
                 border_mode="valid", sub_sample=(1, 1),
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.nb_filter = nb_filter
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.border_mode = border_mode
        self.subsample = sub_sample

        assert dim_ordering in {'tf', "th"}, 'dim_ordering must be in {tf,"th}'
        self.dim_ordering = dim_ordering

        kwargs["nb_filter"] = nb_filter
        kwargs["nb_row"] = nb_row
        kwargs["nb_col"] = nb_col
        kwargs["dim_ordering"] = dim_ordering

        self.W_regularizer = W_regularizer
        self.U_regularizer = U_regularizer
        self.b_regularizer = b_regularizer
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        super(LSTMConv2D, self).__init__(**kwargs)
projection.py 文件源码 项目:c2w2c 作者: milankinen 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, weights=None, activation='linear', return_mask=True, **kwargs):
    self.supports_masking = True
    self.output_dim       = output_dim
    self.init             = initializations.get('glorot_uniform')
    self.activation       = activations.get(activation)
    self.initial_weights  = weights
    self.return_mask      = return_mask
    super(Projection, self).__init__(**kwargs)
code_keras.py 文件源码 项目:kaggle_airbnb 作者: svegapons 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def on_epoch_end(self, epoch, logs={}):
        current = logs.get(self.monitor)

        if self.monitor_op(current, self.best):
            self.best = current
            self.best_epoch = epoch
            self.wait = 0
        else:
            if self.wait >= self.patience:
                if self.verbose > 0:
                    print('Epoch %05d: early stopping' % (epoch))
                self.model.stop_training = True
            self.wait += 1
code_keras.py 文件源码 项目:kaggle_airbnb 作者: svegapons 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, init='zero', weights=None, **kwargs):
        self.init = initializations.get(init)
        self.initial_weights = weights
        self.alphas = None
        super(MyPReLU, self).__init__(**kwargs)
Networks.py 文件源码 项目:KerasCog 作者: ABAtanasov 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, 
                 init = 'glorot_uniform', inner_init = 'orthogonal',
                 activation = 'tanh', W_regularizer = None, 
                 U_regularizer = None, b_regularizer = None, 
                 dropout_W = 0.0, dropout_U = 0.0,
                 tau=100, dt=20, noise=.1,
                 dale_ratio = None, **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.activation = activations.get(activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U
        self.tau = tau
        self.dt = dt
        self.noise = noise
        self.dale_ratio = dale_ratio
        if dale_ratio:

            #make dales law matrix
            dale_vec = np.ones(output_dim)
            dale_vec[int(dale_ratio*output_dim):] = -1
            dale = np.diag(dale_vec)
            self.Dale = K.variable(dale)
        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(leak_recurrent, self).__init__(**kwargs)
Networks.py 文件源码 项目:KerasCog 作者: ABAtanasov 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, init='glorot_uniform',
                 activation='linear', weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=False, input_dim=None, dale_ratio = .8, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=2)]

        # OUR CHANGE
        self.dale_ratio = dale_ratio
        if dale_ratio:
            dale_vec = np.ones((input_dim, 1))
            dale_vec[int(dale_ratio*input_dim):, 0] = 0
            self.Dale = K.variable(dale_vec)

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)

        super(Dense, self).__init__(**kwargs)
custom_layers.py 文件源码 项目:head-segmentation 作者: szywind 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, weights=None, axis=-1, momentum=0.9, beta_init='zero', gamma_init='one', **kwargs):
        self.momentum = momentum
        self.axis = axis
        self.beta_init = initializations.get(beta_init)
        self.gamma_init = initializations.get(gamma_init)
        self.initial_weights = weights
        super(Scale, self).__init__(**kwargs)
ATrousConvolution2D.py 文件源码 项目:neural_style 作者: metaflow-ai 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, nb_filter, nb_row, nb_col, rate=2,
                 init='glorot_uniform', activation='linear', weights=None,
                 border_mode='valid', dim_ordering=K.image_dim_ordering(),
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):
        if K._BACKEND != 'tensorflow':
            raise Exception('TensorBoard callback only works '
                            'with the TensorFlow backend.')

        if border_mode not in {'valid', 'same'}:
            raise Exception('Invalid border mode for Convolution2D:', border_mode)
        self.nb_filter = nb_filter
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.rate = rate
        self.init = initializations.get(init, dim_ordering=dim_ordering)
        self.activation = activations.get(activation)
        assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}'
        self.border_mode = border_mode
        assert dim_ordering in {'tf', 'th'}, 'dim_ordering must be in {tf, th}'
        self.dim_ordering = dim_ordering

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights
        super(ATrousConvolution2D, self).__init__(**kwargs)
ConvolutionTranspose2D.py 文件源码 项目:neural_style 作者: metaflow-ai 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self, nb_filter, nb_row, nb_col,
                 init='glorot_uniform', activation='linear', weights=None,
                 border_mode='valid', subsample=(1, 1), dim_ordering=K.image_dim_ordering(),
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):

        if border_mode not in {'valid', 'same'}:
            raise Exception('Invalid border mode for Convolution2D:', border_mode)
        self.nb_filter = nb_filter
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.dim_ordering = dim_ordering
        self.init = initializations.get(init, dim_ordering=self.dim_ordering)
        self.activation = activations.get(activation)
        assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}'
        self.border_mode = border_mode
        self.subsample = tuple(subsample)


        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights

        super(ConvolutionTranspose2D, self).__init__(**kwargs)
KerasBatchNormalization.py 文件源码 项目:audit-log-detection 作者: twosixlabs 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, epsilon=1e-6, mode=0, axis=-1, momentum=0.9,
                 weights=None, beta_init='zero', gamma_init='one', **kwargs):
        self.beta_init = initializations.get(beta_init)
        self.gamma_init = initializations.get(gamma_init)
        self.epsilon = epsilon
        self.mode = mode
        self.axis = axis
        self.momentum = momentum
        self.initial_weights = weights
        if self.mode == 0:
            self.uses_learning_phase = True
        super(BatchNormalization, self).__init__(**kwargs)
model.py 文件源码 项目:Keras-CNN-QA 作者: shashankg7 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get('glorot_uniform')
        super(SimLayer, self).__init__(**kwargs)


问题


面经


文章

微信
公众号

扫码关注公众号