python类get()的实例源码

layers.py 文件源码 项目:keras-utilities 作者: cbaziotis 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self,
                 W_regularizer=None, u_regularizer=None, b_regularizer=None,
                 W_constraint=None, u_constraint=None, b_constraint=None,
                 bias=True, **kwargs):

        self.supports_masking = True
        self.init = initializations.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.u_regularizer = regularizers.get(u_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.u_constraint = constraints.get(u_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(AttentionWithContext, self).__init__(**kwargs)
itosfm.py 文件源码 项目:State-Frequency-Memory-stock-prediction 作者: z331565360 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, freq_dim, hidden_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.freq_dim = freq_dim
        self.hidden_dim = hidden_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(ITOSFM, self).__init__(**kwargs)
itosfm.py 文件源码 项目:State-Frequency-Memory-stock-prediction 作者: z331565360 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, freq_dim, hidden_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.freq_dim = freq_dim
        self.hidden_dim = hidden_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(ITOSFM, self).__init__(**kwargs)
ChainCRF.py 文件源码 项目:emnlp2017-bilstm-cnn-crf 作者: UKPLab 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, init='glorot_uniform',
                 U_regularizer=None, b_start_regularizer=None, b_end_regularizer=None,
                 U_constraint=None, b_start_constraint=None, b_end_constraint=None,
                 weights=None,
                 **kwargs):
        self.supports_masking = True
        self.uses_learning_phase = True
        self.input_spec = [InputSpec(ndim=3)]
        self.init = initializations.get(init)

        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_start_regularizer = regularizers.get(b_start_regularizer)
        self.b_end_regularizer = regularizers.get(b_end_regularizer)
        self.U_constraint = constraints.get(U_constraint)
        self.b_start_constraint = constraints.get(b_start_constraint)
        self.b_end_constraint = constraints.get(b_end_constraint)

        self.initial_weights = weights

        super(ChainCRF, self).__init__(**kwargs)
lstm2ntm.py 文件源码 项目:NTM-Keras 作者: SigmaQuan 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, memory_dim=128, memory_size=20,
                 controller_output_dim=100, location_shift_range=1,
                 num_read_head=1, num_write_head=1,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, R_regularizer=None,
                 b_regularizer=None, W_y_regularizer=None,
                 W_xi_regularizer=None, W_r_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(NTM, self).__init__(**kwargs)
generators.py 文件源码 项目:ppap 作者: unique-horn 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self,
                 input_channels,
                 output_shape,
                 num_filters,
                 layer_sizes,
                 init="glorot_uniform"):
        """
        Parameters
        ----------
        output_shape : list_like
            Size of the generated matrix (x, y)
        layer_sizes : array_like
            List of nodes in hidden layers
        init : str
            Keras initializer to use for weights
        """
        self.input_channels = input_channels
        self.num_filters = num_filters
        self.output_shape = output_shape
        self.layer_sizes = layer_sizes
        self.init = initializations.get(init)
        self.bias_init = initializations.get("zero")

        self.setup_weights()
        self.setup_output()
generators.py 文件源码 项目:ppap 作者: unique-horn 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self,
                 output_shape,
                 layer_sizes,
                 scale,
                 init="glorot_uniform"):
        """
        Parameters
        ----------
        output_shape : list_like
            Size of the generated matrix (x, y)
        layer_sizes : array_like
            List of nodes in hidden layers
        init : str
            Keras initializer to use for weights
        """
        self.output_shape = output_shape
        self.layer_sizes = layer_sizes
        self.init = initializations.get(init)
        self.bias_init = initializations.get("zero")
        self.scale = scale

        self.setup_weights()
        self.setup_output()
generators.py 文件源码 项目:ppap 作者: unique-horn 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, filter_size, input_shape, filters_in, batch_size):
        """
        Parameters:
        -----------
        filter_size : int
            Size of the filter in 1 dimension (total = filter_size ** 2)
        input_shape: list_like
            Size of input image this filter is working on. This is used for
            generating separate filters for each pixel position of the image
        filter_in : int
            Number of channels in input
        batch_size : int
            Batch size
        """

        self.filter_size = filter_size
        self.input_shape = input_shape
        self.filters_in = filters_in
        self.batch_size = batch_size
        self.init = initializations.get("glorot_uniform")
        self.b_init = initializations.get("zero")

        self.setup_weights()
generators.py 文件源码 项目:ppap 作者: unique-horn 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, filter_size, input_shape, filters_in, batch_size):
        """
        Parameters:
        -----------
        filter_size : int
            Size of the filter in 1 dimension (total = filter_size ** 2)
        input_shape: list_like
            Size of input image this filter is working on. This is used for
            generating separate filters for each pixel position of the image
        filter_in : int
            Number of channels in input
        batch_size : int
            Batch size
        """

        self.filter_size = filter_size
        self.input_shape = input_shape
        self.filters_in = filters_in
        self.batch_size = batch_size
        self.init = initializations.get("glorot_uniform")
        self.b_init = initializations.get("zero")

        self.setup_weights()
generators.py 文件源码 项目:ppap 作者: unique-horn 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, filter_size, input_shape, filters_in, batch_size):
        """
        Parameters:
        -----------
        filter_size : int
            Size of the filter in 1 dimension (total = filter_size ** 2)
        input_shape: list_like
            Size of input image this filter is working on. This is used for
            generating separate filters for each pixel position of the image
        filter_in : int
            Number of channels in input
        batch_size : int
            Batch size
        """

        self.filter_size = filter_size
        self.input_shape = input_shape
        self.filters_in = filters_in
        self.batch_size = batch_size
        self.init = initializations.get("glorot_uniform")
        self.b_init = initializations.get("zero")

        self.setup_weights()
memory_layers.py 文件源码 项目:Keras_note 作者: LibCorner 项目源码 文件源码 阅读 13 收藏 0 点赞 0 评论 0
def __init__(self,output_dim,mem_vec_dim,init='glorot_uniform', activation='linear', weights=None,
                 activity_regularizer=None,input_dim=None, **kwargs):
        '''
        Params:
            output_dim: ?????
            mem_vec_dim: query?????

        '''
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim
        self.input_dim = input_dim
        self.mem_vector_dim=mem_vec_dim

        self.activity_regularizer = regularizers.get(activity_regularizer)


        self.initial_weights = weights

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(MemoryNet,self).__init__(**kwargs)
rhn.py 文件源码 项目:deep-models 作者: LaurentMazare 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, L,
             init='glorot_uniform', inner_init='orthogonal',
             activation='tanh', inner_activation='hard_sigmoid',
             W_regularizer=None, U_regularizer=None, b_regularizer=None,
             dropout_W=0., dropout_U=0., **kwargs):
    self.output_dim = output_dim
    self.init = initializations.get(init)
    self.inner_init = initializations.get(inner_init)
    self.activation = activations.get(activation)
    self.inner_activation = activations.get(inner_activation)
    self.W_regularizer = regularizers.get(W_regularizer)
    self.U_regularizer = regularizers.get(U_regularizer)
    self.b_regularizer = regularizers.get(b_regularizer)
    self.dropout_W, self.dropout_U = dropout_W, dropout_U
    self.L = L

    if self.dropout_W or self.dropout_U:
        self.uses_learning_phase = True
    super(RHN, self).__init__(**kwargs)
embedding2D.py 文件源码 项目:NN_sentiment 作者: hx364 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, output_dim,
                 init='uniform', input_length=None,
                 W_regularizer=None, activity_regularizer=None,
                 W_constraint=None,
                 mask_zero=False,
                 weights=None, **kwargs):
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.input_length = input_length
        self.mask_zero = mask_zero

        self.W_constraint = constraints.get(W_constraint)
        self.constraints = [self.W_constraint]

        self.W_regularizer = regularizers.get(W_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.initial_weights = weights
        kwargs['input_shape'] = (self.input_dim,)
        super(Embedding2D, self).__init__(**kwargs)
embedding2D.py 文件源码 项目:NN_sentiment 作者: hx364 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, output_dim,
                 init='uniform', input_length=None,
                 W_regularizer=None, activity_regularizer=None,
                 W_constraint=None,
                 mask_zero=False,
                 weights=None, **kwargs):
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.input_length = input_length
        self.mask_zero = mask_zero

        self.W_constraint = constraints.get(W_constraint)
        self.constraints = [self.W_constraint]

        self.W_regularizer = regularizers.get(W_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.initial_weights = weights
        kwargs['input_shape'] = (self.input_dim,)
        super(Embedding, self).__init__(**kwargs)
eltwise_product.py 文件源码 项目:mlnet 作者: marcellacornia 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self, downsampling_factor=10, init='glorot_uniform', activation='linear',
                 weights=None, W_regularizer=None, activity_regularizer=None,
                 W_constraint=None, input_dim=None, **kwargs):

        self.downsampling_factor = downsampling_factor
        self.init = initializations.get(init)
        self.activation = activations.get(activation)

        self.W_regularizer = regularizers.get(W_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)

        self.initial_weights = weights

        self.input_dim = input_dim
        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)

        self.input_spec = [InputSpec(ndim=4)]
        super(EltWiseProduct, self).__init__(**kwargs)
huffmax.py 文件源码 项目:huffmax 作者: farizrahman4u 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, nb_classes, frequency_table=None, mode=0, init='glorot_uniform', weights=None, W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, verbose=False, **kwargs):
        '''
        # Arguments:
        nb_classes: Number of classes.
        frequency_table: list. Frequency of each class. More frequent classes will have shorter huffman codes.
        mode: integer. One of [0, 1]
        verbose: boolean. Set to true to see the progress of building huffman tree. 
        '''
        self.nb_classes = nb_classes
        if frequency_table is None:
            frequency_table = [1] * nb_classes
        self.frequency_table = frequency_table
        self.mode = mode
        self.init = initializations.get(init)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)
        self.bias = bias
        self.initial_weights = weights
        self.verbose = verbose
        super(Huffmax, self).__init__(**kwargs)
layer_normalization_RNN.py 文件源码 项目:New_Layers-Keras-Tensorflow 作者: WeidiXie 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 activation='tanh', beta_init='zero', gamma_init='one',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 gamma_regularizer=None, beta_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.activation = activations.get(activation)
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.beta_init = initializations.get(beta_init)
        self.gamma_init = initializations.get(gamma_init)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.dropout_W = dropout_W
        self.dropout_U = dropout_U
        self.epsilon = 1e-5
        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(LN_SimpleRNN, self).__init__(**kwargs)
LSTM.py 文件源码 项目:NeuralSentenceOrdering 作者: FudanNLP 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid'):
        #self.input_dim = input_dim
        self.output_dim = int(output_dim / 2)
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)

        self.input_dim = input_dim
        #self.input = K.placeholder(input_shape)

        # initial states: 2 all-zero tensor of shape (output_dim)
        self.forward_lstm = LSTM(input_dim = input_dim, output_dim = self.output_dim)
        self.backward_lstm = LSTM(input_dim = input_dim, output_dim = self.output_dim)

        self.params = self.forward_lstm.params + self.backward_lstm.params

        #if self.initial_weights is not None:
        #    self.set_weights(self.initial_weights)
        #    del self.initial_weights
rtn.py 文件源码 项目:ikelos 作者: braingineer 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(DualCurrent, self).__init__(**kwargs)
rtn.py 文件源码 项目:ikelos 作者: braingineer 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 activation='tanh', inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 shape_key=None, dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U
        self.shape_key = shape_key or {}

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        kwargs['consume_less'] = 'gpu'
        super(RTTN, self).__init__(**kwargs)

        self.num_actions = 4
recurrent.py 文件源码 项目:keras_bn_library 作者: bnsnapper 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):

        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(DecoderVaeLSTM, self).__init__(**kwargs)
recurrent.py 文件源码 项目:keras_bn_library 作者: bnsnapper 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W = dropout_W
        self.dropout_U = dropout_U
        self.stateful = False

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(QRNN, self).__init__(**kwargs)
preposition_predictors.py 文件源码 项目:onto-lstm 作者: pdasigi 项目源码 文件源码 阅读 14 收藏 0 点赞 0 评论 0
def __init__(self, score_dim=1, num_hidden_layers=0, proj_dim=None, init='uniform', composition_type='HPCT',
                 **kwargs):
        self.composition_type = composition_type
        self.supports_masking = True
        self.num_hidden_layers = num_hidden_layers
        self.proj_dim = proj_dim
        self.init = initializations.get(init)
        self.proj_head = None
        self.proj_prep = None
        self.proj_child = None
        self.scorer = None
        self.hidden_layers = []
        self.score_dim = score_dim
        self.allowed_compositions = []
        super(PrepositionPredictor, self).__init__(**kwargs)
pooling.py 文件源码 项目:onto-lstm 作者: pdasigi 项目源码 文件源码 阅读 14 收藏 0 点赞 0 评论 0
def __init__(self, init='uniform', projection_dim=50, weights=None, **kwargs):
        self.intra_attention_weights = weights
        self.init = initializations.get(init)
        self.projection_dim = projection_dim
        super(IntraAttention, self).__init__(**kwargs)
attentionlayer.py 文件源码 项目:recurrent-attention-for-QA-SQUAD-based-on-keras 作者: wentaozhu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, h, output_dim,
                 init='glorot_uniform', **kwargs):
        self.init = initializations.get(init)
        self.h = h
        self.output_dim = output_dim
        #removing the regularizers and the dropout
        super(AttenLayer, self).__init__(**kwargs)
        # this seems necessary in order to accept 3 input dimensions
        # (samples, timesteps, features)
        self.input_spec=[InputSpec(ndim=3)]
layers.py 文件源码 项目:keras-utilities 作者: cbaziotis 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self,
                 W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):
        """
        Keras Layer that implements an Attention mechanism for temporal data.
        Supports Masking.
        Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
        # Input shape
            3D tensor with shape: `(samples, steps, features)`.
        # Output shape
            2D tensor with shape: `(samples, features)`.
        :param kwargs:

        Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
        The dimensions are inferred based on the output shape of the RNN.
        Example:
            model.add(LSTM(64, return_sequences=True))
            model.add(Attention())
        """
        self.supports_masking = True
        self.init = initializations.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(Attention, self).__init__(**kwargs)
utils.py 文件源码 项目:dense_tensor 作者: bstriner 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def get_initializer(initializer):
    if keras_2:
        from keras import initializers
        return initializers.get(initializer)
    else:
        from keras import initializations
        return initializations.get(initializer)
textClassifierRNN.py 文件源码 项目:textClassifier 作者: richliao 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self, **kwargs):
        self.init = initializations.get('normal')
        #self.input_spec = [InputSpec(ndim=3)]
        super(AttLayer, self).__init__(**kwargs)
textClassifierHATT.py 文件源码 项目:textClassifier 作者: richliao 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def __init__(self, **kwargs):
        self.init = initializations.get('normal')
        #self.input_spec = [InputSpec(ndim=3)]
        super(AttLayer, self).__init__(**kwargs)
HyperNetwork_max.py 文件源码 项目:ppap 作者: unique-horn 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self,
               input_channels,
               rows, cols,
               output_shape,
               num_filters,
               hidden_dim,
               init="glorot_uniform"):
    """
    Parameters
    ----------
    output_shape : list_like
        Size of the generated matrix (x, y)
    layer_sizes : array_like
        List of nodes in hidden layers
    init : str
        Keras initializer to use for weights
    """
    self.input_rows = rows
    self.input_cols = cols
    self.input_channels = input_channels
    self.num_filters = num_filters
    self.output_shape = output_shape
    self.hidden_dim = hidden_dim
    self.init = initializations.get(init)
    self.bias_init = initializations.get("zero")
    self.setup_weights()
    self.num_param = np.prod(self.output_shape) * self.num_filters * \
                     self.input_channels


问题


面经


文章

微信
公众号

扫码关注公众号