python类InputSpec()的实例源码

onto_attention.py 文件源码 项目:onto-lstm 作者: pdasigi 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, num_senses, num_hyps, use_attention=False, return_attention=False, **kwargs):
        # Set output_dim in kwargs so that we can pass it along to LSTM's init
        kwargs['output_dim'] = output_dim
        self.num_senses = num_senses
        self.num_hyps = num_hyps
        self.use_attention = use_attention
        self.return_attention = return_attention
        super(OntoAttentionLSTM, self).__init__(**kwargs)
        # Recurrent would have set the input shape to cause the input dim to be 3. Change it.
        self.input_spec = [InputSpec(ndim=5)]
        if self.consume_less == "cpu":
            # In the LSTM implementation in Keras, consume_less = cpu causes all gates' inputs to be precomputed
            # and stored in memory. However, this doesn't work with OntoLSTM since the input to the gates is 
            # dependent on the previous timestep's output.
            warnings.warn("OntoLSTM does not support consume_less = cpu. Changing it to mem.")
            self.consume_less = "mem"
        #TODO: Remove this dependency.
        if K.backend() == "tensorflow" and not self.unroll:
            warnings.warn("OntoLSTM does not work with unroll=False when backend is TF. Changing it to True.")
            self.unroll = True
nse.py 文件源码 项目:onto-lstm 作者: pdasigi 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        self.input_spec = [InputSpec(shape=input_shape)]
        input_dim = input_shape[-1]
        reader_input_shape = self.get_reader_input_shape(input_shape)
        print >>sys.stderr, "NSE reader input shape:", reader_input_shape 
        writer_input_shape = (input_shape[0], 1, self.output_dim * 2)  # Will process one timestep at a time
        print >>sys.stderr, "NSE writer input shape:", writer_input_shape 
        composer_input_shape = self.get_composer_input_shape(input_shape)
        print >>sys.stderr, "NSE composer input shape:", composer_input_shape 
        self.reader.build(reader_input_shape)
        self.writer.build(writer_input_shape)
        self.composer.build(composer_input_shape)

        # Aggregate weights of individual components for this layer.
        reader_weights = self.reader.trainable_weights
        writer_weights = self.writer.trainable_weights
        composer_weights = self.composer.trainable_weights
        self.trainable_weights = reader_weights + writer_weights + composer_weights

        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
rnn_cell.py 文件源码 项目:yoctol-keras-layer-zoo 作者: Yoctol 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        if not self.recurrent_layer.built:
            self.recurrent_layer.build(input_shape)

        recurrent_output_shapes = self.recurrent_layer.compute_output_shape(
            input_shape
        )
        if self.return_sequences:
            if not self.dense_layer.built:
                self.dense_layer.build((
                    recurrent_output_shapes[0],
                    recurrent_output_shapes[2]
                ))
        elif not self.dense_layer.built:
            self.dense_layer.build(recurrent_output_shapes)

        super(RNNCell, self).build(input_shape)

        batch_size = input_shape[0] if self.stateful else None
        self.dense_state_spec = InputSpec(
            shape=(batch_size, self.dense_layer.units)
        )
        self.dense_state = None
weight_norm_layers.py 文件源码 项目:nn_playground 作者: DingKe 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[-1]

        self.kernel = self.add_weight(shape=(input_dim, self.units),
                                      initializer=self.kernel_initializer,
                                      name='kernel',
                                      regularizer=self.kernel_regularizer,
                                      constraint=self.kernel_constraint)
        self.g = self.add_weight(shape=(self.units,),
                                 initializer='one',
                                 name='g')
        if self.use_bias:
            self.bias = self.add_weight(shape=(self.units,),
                                        initializer=self.bias_initializer,
                                        name='bias',
                                        regularizer=self.bias_regularizer,
                                        constraint=self.bias_constraint)
        else:
            self.bias = None
        self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
        self.built = True
ChainCRF.py 文件源码 项目:emnlp2017-bilstm-cnn-crf 作者: UKPLab 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, init='glorot_uniform',
                 U_regularizer=None, b_start_regularizer=None, b_end_regularizer=None,
                 U_constraint=None, b_start_constraint=None, b_end_constraint=None,
                 weights=None,
                 **kwargs):
        self.supports_masking = True
        self.uses_learning_phase = True
        self.input_spec = [InputSpec(ndim=3)]
        self.init = initializations.get(init)

        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_start_regularizer = regularizers.get(b_start_regularizer)
        self.b_end_regularizer = regularizers.get(b_end_regularizer)
        self.U_constraint = constraints.get(U_constraint)
        self.b_start_constraint = constraints.get(b_start_constraint)
        self.b_end_constraint = constraints.get(b_end_constraint)

        self.initial_weights = weights

        super(ChainCRF, self).__init__(**kwargs)
models.py 文件源码 项目:enhance 作者: cdiazbas 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self,
                 padding=(1, 1),
                 data_format=None,
                 **kwargs):
        super(ReflectionPadding2D, self).__init__(**kwargs)
        self.data_format = conv_utils.normalize_data_format(data_format)
        if isinstance(padding, int):
            self.padding = ((padding, padding), (padding, padding))
        elif hasattr(padding, '__len__'):
            if len(padding) != 2:
                raise ValueError('`padding` should have two elements. '
                                 'Found: ' + str(padding))
            height_padding = conv_utils.normalize_tuple(padding[0], 2,
                                                        '1st entry of padding')
            width_padding = conv_utils.normalize_tuple(padding[1], 2,
                                                       '2nd entry of padding')
            self.padding = (height_padding, width_padding)
        else:
            raise ValueError('`padding` should be either an int, '
                             'a tuple of 2 ints '
                             '(symmetric_height_pad, symmetric_width_pad), '
                             'or a tuple of 2 tuples of 2 ints '
                             '((top_pad, bottom_pad), (left_pad, right_pad)). '
                             'Found: ' + str(padding))
        self.input_spec = InputSpec(ndim=4)
convolutional.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self,
                 kernel_size=3,
                 kernel_initialization=.1,
                 bias_initialization=1,
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super(GDNConv1D, self).__init__(
            rank=1,
            kernel_size=kernel_size,
            data_format='channels_last',
            kernel_initialization=kernel_initialization,
            bias_initialization=bias_initialization,
            kernel_regularizer=kernel_regularizer,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer,
            kernel_constraint=kernel_constraint,
            bias_constraint=bias_constraint,
            **kwargs)
        self.input_spec = InputSpec(ndim=3)
convolutional.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self,
                 kernel_size=(3, 3),
                 data_format=None,
                 kernel_initialization=.1,
                 bias_initialization=1,
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super(GDNConv2D, self).__init__(
            rank=2,
            kernel_size=kernel_size,
            data_format=data_format,
            kernel_initialization=kernel_initialization,
            bias_initialization=bias_initialization,
            kernel_regularizer=kernel_regularizer,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer,
            kernel_constraint=kernel_constraint,
            bias_constraint=bias_constraint,
            **kwargs)
        self.input_spec = InputSpec(ndim=4)
convolutional.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self,
                 kernel_size=(3, 3, 3),
                 data_format=None,
                 kernel_initialization=.1,
                 bias_initialization=1,
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super(GDNConv3D, self).__init__(
            rank=3,
            kernel_size=kernel_size,
            data_format=data_format,
            kernel_initialization=kernel_initialization,
            bias_initialization=bias_initialization,
            kernel_regularizer=kernel_regularizer,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer,
            kernel_constraint=kernel_constraint,
            bias_constraint=bias_constraint,
            **kwargs)
        self.input_spec = InputSpec(ndim=5)
advanced_activations.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        alpha_shape = input_shape[self.axis]

        self.alpha = self.init((alpha_shape,),
                                name='alpha_pos'.format(self.name))
        self.rho = K.variable(self.power_init * np.ones(alpha_shape),
                                 name='rho_pos'.format(self.name))

        if self.fit:
            self.trainable_weights = [self.alpha, self.rho]

        self.input_spec = [InputSpec(dtype=K.floatx(),
                                     shape=input_shape)]

        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, quadratic_filters=2, init='glorot_uniform', weights=None,
                 W_quad_regularizer=None, W_lin_regularizer=None, activity_regularizer=None,
                 W_quad_constraint=None, W_lin_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.quadratic_filters = quadratic_filters
        self.input_dim = input_dim

        self.W_quad_regularizer = regularizers.get(W_quad_regularizer)
        self.W_lin_regularizer = regularizers.get(W_lin_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_quad_constraint = constraints.get(W_quad_constraint)
        self.W_lin_constraint = constraints.get(W_lin_constraint)

        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=2)]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(GQM, self).__init__(**kwargs)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, activation='linear',
                 bias_regularizer=None,
                 bias_constraint=None,
                 bias_initializer='zeros',
                 use_bias=True, input_dim=None, **kwargs):

        self.activation = activations.get(activation)
        self.input_dim = input_dim

        self.bias_initializer = initializers.get(bias_initializer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.bias_constraint = constraints.get(bias_constraint)

        self.use_bias = use_bias
        self.input_spec = [InputSpec(ndim=2)]

        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(EminusS, self).__init__(**kwargs)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, quadratic_filters=2, init='glorot_uniform', weights=None,
                 W_quad_regularizer=None, W_lin_regularizer=None, activity_regularizer=None,
                 W_quad_constraint=None, W_lin_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.quadratic_filters = quadratic_filters
        self.input_dim = input_dim

        self.W_quad_regularizer = regularizers.get(W_quad_regularizer)
        self.W_lin_regularizer = regularizers.get(W_lin_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_quad_constraint = constraints.get(W_quad_constraint)
        self.W_lin_constraint = constraints.get(W_lin_constraint)

        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=5)]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(GQM_4D, self).__init__(**kwargs)
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[-1]

        self.kernel = self.add_weight(shape=(input_dim, self.units),
                                      initializer=self.kernel_initializer,
                                      name='kernel',
                                      regularizer=self.kernel_regularizer,
                                      constraint=self.kernel_constraint)

        if self.tied_k:
            k_size = (1,)
        else:
            k_size = (self.units,)

        self.k = self.add_weight(shape=k_size,
                                 initializer=self.k_initializer,
                                 name='k',
                                 regularizer=self.k_regularizer,
                                 constraint=self.k_constraint)

        self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
        self.built = True
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, units,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=constraints.NonNeg(),
                 activity_regularizer=None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(WeightedMean, self).__init__(**kwargs)

        self.units = units
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.input_spec = InputSpec(min_ndim=2)
        self.supports_masking = True
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, init='glorot_uniform',
                 activation=None, weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim='2+')]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(DenseNonNeg, self).__init__(**kwargs)
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[-1]
        self.input_dim = input_dim
        self.input_spec = [InputSpec(dtype=K.floatx(),
                                     ndim='2+')]

        self.W = self.add_weight((input_dim, self.output_dim),
                                 initializer=self.init,
                                 name='{}_W'.format(self.name),
                                 regularizer=self.W_regularizer,
                                 constraint=self.W_constraint)
        if self.bias:
            self.b = self.add_weight((self.output_dim,),
                                     initializer='zero',
                                     name='{}_b'.format(self.name),
                                     regularizer=self.b_regularizer,
                                     constraint=self.b_constraint)
        else:
            self.b = None

        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
        self.built = True
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[-1]
        self.input_dim = input_dim
        self.input_spec = [InputSpec(dtype=K.floatx(),
                                     ndim='2+')]

        self.W = self.add_weight((input_dim, input_dim),
                                 initializer=self.init,
                                 name='{}_W'.format(self.name),
                                 regularizer=self.W_regularizer,
                                 constraint=self.W_constraint)
        if self.bias:
            self.b = self.add_weight((input_dim,),
                                     initializer='zero',
                                     name='{}_b'.format(self.name),
                                     regularizer=self.b_regularizer,
                                     constraint=self.b_constraint)
        else:
            self.b = None

        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
        self.built = True
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, init='glorot_uniform',
                 activation=None, weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim='2+')]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(DivisiveNormalization, self).__init__(**kwargs)
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        assert len(input_shape) >= 2
        input_dim = input_shape[-1]
        self.input_dim = input_dim
        self.input_spec = [InputSpec(dtype=K.floatx(),
                                     ndim='2+')]

        self.W = self.add_weight((input_dim, input_dim),
                                 initializer=self.init,
                                 name='{}_W'.format(self.name),
                                 regularizer=self.W_regularizer,
                                 constraint=self.W_constraint)
        if self.bias:
            self.b = self.add_weight((input_dim,),
                                     initializer='zero',
                                     name='{}_b'.format(self.name),
                                     regularizer=self.b_regularizer,
                                     constraint=self.b_constraint)
        else:
            self.b = None

        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
        self.built = True
ChainCRF.py 文件源码 项目:SGAITagger 作者: zhiweiuu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, init='glorot_uniform',
                 U_regularizer=None, b_start_regularizer=None, b_end_regularizer=None,
                 U_constraint=None, b_start_constraint=None, b_end_constraint=None,
                 weights=None,
                 **kwargs):
        self.supports_masking = True
        self.uses_learning_phase = True
        self.input_spec = [InputSpec(ndim=3)]
        self.init = initializations.get(init)

        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_start_regularizer = regularizers.get(b_start_regularizer)
        self.b_end_regularizer = regularizers.get(b_end_regularizer)
        self.U_constraint = constraints.get(U_constraint)
        self.b_start_constraint = constraints.get(b_start_constraint)
        self.b_end_constraint = constraints.get(b_end_constraint)

        self.initial_weights = weights

        super(ChainCRF, self).__init__(**kwargs)
discrimination.py 文件源码 项目:Keras-GAN-Animeface-Character 作者: forcecore 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, nb_kernels, kernel_dim, init='glorot_uniform', weights=None,
                 W_regularizer=None, activity_regularizer=None,
                 W_constraint=None, input_dim=None, **kwargs):
        self.init = initializers.get(init)
        self.nb_kernels = nb_kernels
        self.kernel_dim = kernel_dim
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)

        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=2)]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(MinibatchDiscrimination, self).__init__(**kwargs)
discrimination.py 文件源码 项目:Keras-GAN-Animeface-Character 作者: forcecore 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        assert len(input_shape) == 2

        input_dim = input_shape[1]
        self.input_spec = [InputSpec(dtype=K.floatx(),
                                     shape=(None, input_dim))]

        self.W = self.add_weight(shape=(self.nb_kernels, input_dim, self.kernel_dim),
            initializer=self.init,
            name='kernel',
            regularizer=self.W_regularizer,
            trainable=True,
            constraint=self.W_constraint)

        # Set built to true.
        super(MinibatchDiscrimination, self).build(input_shape)
15-keras_seq2seq_mod.py 文件源码 项目:albemarle 作者: SeanTater 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        input_shape = list(input_shape)
        input_shape = input_shape[:1] + [self.output_length] + input_shape[1:]
        if not self.hidden_dim:
            self.hidden_dim = input_shape[-1]
        output_dim = input_shape[-1]
        self.output_dim = self.hidden_dim
        initial_weights = self.initial_weights
        self.initial_weights = None
        super(LSTMDecoder, self).build(input_shape)
        self.output_dim = output_dim
        self.initial_weights = initial_weights
        self.W_y = self.init((self.hidden_dim, self.output_dim), name='{}_W_y'.format(self.name))
        self.b_y = K.zeros((self.output_dim), name='{}_b_y'.format(self.name))
        self.trainable_weights += [self.W_y, self.b_y]
        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
        input_shape.pop(1)
        self.input_spec = [InputSpec(shape=tuple(input_shape))]
layers.py 文件源码 项目:anago 作者: Hironsan 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, init='glorot_uniform',
                 U_regularizer=None,
                 b_start_regularizer=None,
                 b_end_regularizer=None,
                 U_constraint=None,
                 b_start_constraint=None,
                 b_end_constraint=None,
                 weights=None,
                 **kwargs):
        super(ChainCRF, self).__init__(**kwargs)
        self.init = initializers.get(init)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_start_regularizer = regularizers.get(b_start_regularizer)
        self.b_end_regularizer = regularizers.get(b_end_regularizer)
        self.U_constraint = constraints.get(U_constraint)
        self.b_start_constraint = constraints.get(b_start_constraint)
        self.b_end_constraint = constraints.get(b_end_constraint)

        self.initial_weights = weights

        self.supports_masking = True
        self.uses_learning_phase = True
        self.input_spec = [InputSpec(ndim=3)]
KerasBatchNormalization.py 文件源码 项目:audit-log-detection 作者: twosixlabs 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        self.input_spec = [InputSpec(shape=input_shape)]
        shape = (input_shape[self.axis],)

        self.gamma = self.gamma_init(shape, name='{}_gamma'.format(self.name))
        self.beta = self.beta_init(shape, name='{}_beta'.format(self.name))
        self.trainable_weights = [self.gamma, self.beta]

        self.running_mean = K.zeros(shape,
                                    name='{}_running_mean'.format(self.name))
        self.running_std = K.ones(shape,
                                  name='{}_running_std'.format(self.name))
        self.non_trainable_weights = [self.running_mean, self.running_std]

        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
        self.built = True
        self.called_with = None
attention.py 文件源码 项目:extkeras 作者: andhus 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, recurrent_layer,
                 return_attention=False,
                 concatenate_input=True,
                 attend_after=False,
                 **kwargs):
        super(RecurrentAttention, self).__init__(**kwargs)
        self.recurrent_layer = self.add_child(
            'recurrent_layer',
            recurrent_layer
        )
        self.return_attention = return_attention
        self.concatenate_input = concatenate_input
        self.attend_after = attend_after

        self.input_spec = [InputSpec(ndim=3), None]

        self._attended_spec = InputSpec(ndim=2)
        self._attention_step_output_spec = InputSpec(ndim=2)
        self._attention_state_spec = [InputSpec(ndim=2)]
        self._attention_states = [None]

        # will be set in call, then passed to step by get_constants
        self._attended = None
attention.py 文件源码 项目:extkeras 作者: andhus 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(
        self,
        n_components,
        alpha_activation=None,
        beta_activation=None,
        kappa_activation=None,
        *args,
        **kwargs
    ):
        super(GravesSequenceAttention, self).__init__(*args, **kwargs)
        self.distribution = AlexGravesSequenceAttentionParams(
            n_components,
            alpha_activation,
            beta_activation,
            kappa_activation,
        )
        self._attention_states = [None, None]
        self._attention_state_spec = [
            InputSpec(ndim=2),          # attention (tm1)
            InputSpec(shape=(None, 1))  # kappa
        ]
separable_RNN.py 文件源码 项目:New_Layers-Keras-Tensorflow 作者: WeidiXie 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        self.input_spec = [InputSpec(shape=input_shape)]
        if self.stateful:
            self.reset_states()
        else:
            # initial states: all-zero tensor of shape (output_dim)
            self.states = [None]
        input_dim = input_shape[2]
        self.input_dim = input_dim

        self.U = self.add_weight((self.output_dim, self.output_dim),
                                 initializer=self.inner_init,
                                 name='{}_U'.format(self.name),
                                 regularizer=self.U_regularizer)

        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
        self.built = True
attention.py 文件源码 项目:ikelos 作者: braingineer 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def build(self, input_shape):
        self.input_spec = [InputSpec(ndim=3)]
        if K._BACKEND == 'tensorflow':
            if not input_shape[1]:
                raise Exception('When using TensorFlow, you should define '
                                'explicitly the number of timesteps of '
                                'your sequences.\n'
                                'If your first layer is an Embedding, '
                                'make sure to pass it an "input_length" '
                                'argument. Otherwise, make sure '
                                'the first layer has '
                                'an "input_shape" or "batch_input_shape" '
                                'argument, including the time axis.')

        if not self.layer.built:
            self.layer.build(input_shape)
            self.layer.built = True

        super(ProbabilityTensor, self).build()


问题


面经


文章

微信
公众号

扫码关注公众号