python类load_data()的实例源码

mnist_split_to_test_and_train.py 文件源码 项目:kaggle_art 作者: small-yellow-duck 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def do_split():
    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    os.mkdir('train')
    os.mkdir('test')

    np.savetxt('labels_train.csv', y_train, header='label')
    np.savetxt('labels_test.csv', y_test, header='label')

    for i in xrange(X_train.shape[0]):
        im = Image.fromarray(np.uint8(X_train[i]))
        im.save('train'+str(i)+'.png')

    for i in xrange(X_test.shape[0]):
        im = Image.fromarray(np.uint8(X_test[i]))
        im.save('test'+str(i)+'.png')
test_regularizers.py 文件源码 项目:keras 作者: NVIDIA 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def get_data():
    # the data, shuffled and split between tran and test sets
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train.reshape(60000, 784)[:max_train_samples]
    X_test = X_test.reshape(10000, 784)[:max_test_samples]
    X_train = X_train.astype("float32") / 255
    X_test = X_test.astype("float32") / 255

    # convert class vectors to binary class matrices
    y_train = y_train[:max_train_samples]
    y_test = y_test[:max_test_samples]
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)
    test_ids = np.where(y_test == np.array(weighted_class))[0]

    return (X_train, Y_train), (X_test, Y_test), test_ids
data_generator.py 文件源码 项目:DeepIV 作者: jhartford 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def loadmnist():
    '''
    Load the mnist data once into global variables X_mnist and y_mnist.
    '''
    from keras.datasets import mnist
    global X_mnist
    global y_mnist
    train, test = mnist.load_data()
    X_mnist = []
    y_mnist = []
    for d in [train, test]:
        X, y = d
        X = X.astype('float32')
        X /= 255.
        idx = np.argsort(y)
        X_mnist.append(X[idx, :, :])
        y_mnist.append(y[idx])
mnist_test.py 文件源码 项目:cyclegan_keras 作者: shadySource 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def load_mnist():
    '''
    returns mnist_data
    '''
    # input image dimensions
    img_rows, img_cols = 28, 28

    # the data, shuffled and split between train and test sets
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    if k.image_data_format() == 'channels_first':
        x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
        input_shape = (1, img_rows, img_cols)
    else:
        x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
        input_shape = (img_rows, img_cols, 1)

    x_train = x_train.astype(k.floatx())
    x_train *= 0.96/255
    x_train += 0.02
    return input_shape, x_train
core.py 文件源码 项目:nn-iterated-projections 作者: jn2clark 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_data(n_train, n_test, nb_classes):
    # the data, shuffled and split between train and test sets
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    img_rows, img_cols = (28,28)
    # make some that are the same
    X_digits = {ind:X_train[np.where(y_train == ind)] for ind in range(10) }

    X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols)
    X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
    X_train = X_train[:n_train]
    X_test = X_test[:n_test]

    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')
    X_train /= 255
    X_test /= 255
    print(X_train.shape[0], 'train samples')
    print(X_test.shape[0], 'test samples')

    # convert class vectors to binary class matrices
    Y_train = np_utils.to_categorical(y_train[:n_train], nb_classes)
    Y_test = np_utils.to_categorical(y_test[:n_test], nb_classes)

    return X_train, Y_train, X_test, Y_test
core.py 文件源码 项目:nn-iterated-projections 作者: jn2clark 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_cifar(nb_classes=10):
    # input image dimensions
    # img_rows, img_cols = 32, 32
    # # The CIFAR10 images are RGB.
    # img_channels = 3

    # The data, shuffled and split between train and test sets:
    (X_train, y_train), (X_test, y_test) = cifar10.load_data()

    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')
    X_train /= 255
    X_test /= 255
    print('X_train shape:', X_train.shape)
    print(X_train.shape[0], 'train samples')
    print(X_test.shape[0], 'test samples')

    # Convert class vectors to binary class matrices.
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)

    return X_train, Y_train, X_test, Y_test
aegans.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def get_data(data_name='mnist', test_flag=False):
    if data_name == 'daudi':
        (X_train, y_train), (X_test, y_test) = daudi_load_data()
        if test_flag:
            X_train = X_test
        # approximately -0.2+1 to 0.2+1 --> -1. 1
        X_train = (X_train - 1.0) * 5.0
        X_train = X_train.reshape((X_train.shape[0], 1) + X_train.shape[1:])
    else:
        (X_train, y_train), (X_test, y_test) = mnist.load_data()
        if test_flag:
            X_train = X_test
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5
        X_train = X_train.reshape((X_train.shape[0], 1) + X_train.shape[1:])

    return X_train
aegans_recon.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def get_data(data_name='mnist', test_flag=False):
    if data_name == 'daudi':
        (X_train, y_train), (X_test, y_test) = daudi_load_data()
        if test_flag:
            X_train = X_test
        # approximately -0.2+1 to 0.2+1 --> -1. 1
        X_train = (X_train - 1.0) * 5.0 
        X_train = X_train.reshape((X_train.shape[0], 1) + X_train.shape[1:])
    else:
        (X_train, y_train), (X_test, y_test) = mnist.load_data()
        if test_flag:
            X_train = X_test
        X_train = (X_train.astype(np.float32) - 127.5) / 127.5  
        X_train = X_train.reshape((X_train.shape[0], 1) + X_train.shape[1:])

    return X_train
mnist.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 35 收藏 0 点赞 0 评论 0
def __init___r0(self):
            """
            Load data but reduce the resolution (1/2, 1/2) for x and y direction
            After that, zoom is applied to expand larger size images.
            Then, the further processes are no needed to be updated.
            """
            (X_train, y_train), (X_test, y_test) = mnist.load_data()
            X_train, X_test = X_train[:, ::2, ::2], X_test[:, ::2, ::2]
            X_train_zoom = np.zeros((X_train.shape[0], X_train.shape[1] * 2, X_train.shape[2] * 2), dtype=X_train.dtype)
            X_test_zoom = np.zeros((X_test.shape[0], X_test.shape[1] * 2, X_test.shape[2] * 2), dtype=X_test.dtype)
            for i in range(X_train.shape[0]):
                X_train_zoom[i] = ndimage.interpolation.zoom(X_train[i], 2)
            for i in range(X_test.shape[0]):
                X_test_zoom[i] = ndimage.interpolation.zoom(X_test[i], 2)
            self.Org = (X_train_zoom, y_train), (X_test_zoom, y_test)
            self.Data = self.Org
test_datasets.py 文件源码 项目:deep-coref 作者: clarkkev 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def test_cifar(self):
        print('cifar10')
        (X_train, y_train), (X_test, y_test) = cifar10.load_data()
        print(X_train.shape)
        print(X_test.shape)
        print(y_train.shape)
        print(y_test.shape)

        print('cifar100 fine')
        (X_train, y_train), (X_test, y_test) = cifar100.load_data('fine')
        print(X_train.shape)
        print(X_test.shape)
        print(y_train.shape)
        print(y_test.shape)

        print('cifar100 coarse')
        (X_train, y_train), (X_test, y_test) = cifar100.load_data('coarse')
        print(X_train.shape)
        print(X_test.shape)
        print(y_train.shape)
        print(y_test.shape)
test_protoflow.py 文件源码 项目:braid 作者: Arya-ai 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def test_parser(prototxt, t):
    from protoflow import ProtoFlow
    from berry.layers import print_layers_summary
    from keras.datasets import mnist

    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train[:, np.newaxis, ...]
    X_test = X_test[:, np.newaxis, ...]
    y_train = np.asarray([one_hot(y, 10) for y in list(y_train)])
    y_test = np.asarray([one_hot(y, 10) for y in list(y_test)])
    print X_train.shape, y_train.shape

    with tf.device('/gpu:2'):
        parser = ProtoFlow(prototxt, t, 100)
        model = parser.model
        print_layers_summary(model.layers)
        print[v.name for v in tf.trainable_variables()]
nn_keras_digits.py 文件源码 项目:python_utils 作者: Jayhello 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def show_image():
    """
    this function is for a test to show, server image
    :return:
    """
    (X_train, y_train), (X_test, y_test) = load_data()
    # (X_train, y_train), (X_test, y_test) = mnist.load_data()
    # plot 4 images as gray scale
    plt.subplot(221)
    plt.imshow(X_train[0], cmap=plt.get_cmap('gray'))
    plt.subplot(222)
    plt.imshow(X_train[1], cmap=plt.get_cmap('gray'))
    plt.subplot(223)
    plt.imshow(X_train[2], cmap=plt.get_cmap('gray'))
    plt.subplot(224)
    plt.imshow(X_train[3], cmap=plt.get_cmap('gray'))
    # show the plot
    plt.show()
nn_keras_digits.py 文件源码 项目:python_utils 作者: Jayhello 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def generate_data():
    (X_train, y_train), (X_test, y_test) = load_data()

    # flatten 28*28 images to a 784 vector for each image
    print X_train.shape[1], X_train.shape[2], X_train.shape
    # X_train.shape -> (60000L, 28L, 28L)
    num_pixels = X_train.shape[1] * X_train.shape[2]
    X_train = X_train.reshape(X_train.shape[0], num_pixels).astype('float32')
    X_test = X_test.reshape(X_test.shape[0], num_pixels).astype('float32')

    # normalize inputs from 0-255 to 0-1
    X_train = X_train / 255
    X_test = X_test / 255

    y_train = np_utils.to_categorical(y_train)
    y_test = np_utils.to_categorical(y_test)
    # print y_train.shape, y_test.shape
    # y_train.shape -> (60000L, 10L), y_test.shape -> (10000L, 10L)
    num_classes = y_test.shape[1]

    return X_train, y_train, X_test, y_test
test_keras.py 文件源码 项目:provenance 作者: bmabey 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def mnist_data():
    nb_classes = 10
    (X_train, y_train), (X_test, y_test) = mnist.load_data()
    X_train = X_train.reshape(60000, 784)
    X_test = X_test.reshape(10000, 784)
    X_train = X_train.astype('float32')
    X_test = X_test.astype('float32')
    X_train /= 255
    X_test /= 255
    # convert class vectors to binary class matrices
    Y_train = np_utils.to_categorical(y_train, nb_classes)
    Y_test = np_utils.to_categorical(y_test, nb_classes)
    return {
        'X_train': X_train,
        'Y_train': Y_train,
        'X_test': X_test,
        'Y_test': Y_test
    }


# TODO: test with RmsProp obj and evaluate if merged defaults should do a deepcopy
example_gan_convolutional.py 文件源码 项目:Deep-Learning-with-Keras 作者: PacktPublishing 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def mnist_data():
    (xtrain, ytrain), (xtest, ytest) = mnist.load_data()
    return mnist_process(xtrain), mnist_process(xtest)
datasets.py 文件源码 项目:sef 作者: passalis 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def load_mnist():
    """
    Loads the MNIST dataset
    :return:
    """

    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = x_train.reshape((x_train.shape[0], -1)) / 255.0
    x_test = x_test.reshape((x_test.shape[0], -1)) / 255.0

    return np.float32(x_train), y_train, np.float32(x_test), y_test
mnist.py 文件源码 项目:latplan 作者: guicho271828 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def mnist (labels = range(10)):
    from keras.datasets import mnist
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = (x_train.astype('float32') / 255.).round()
    x_test = (x_test.astype('float32') / 255.).round()
    x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:])))
    x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:])))
    def conc (x,y):
        return np.concatenate((y.reshape([len(y),1]),x),axis=1)
    def select (x,y):
        selected = np.array([elem for elem in conc(x, y) if elem[0] in labels])
        return np.delete(selected,0,1), np.delete(selected,np.s_[1::],1).flatten()
    x_train, y_train = select(x_train, y_train)
    x_test, y_test = select(x_test, y_test)
    return x_train, y_train, x_test, y_test
ff_mnist.py 文件源码 项目:deep_learning_ex 作者: zatonovo 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def run_network(data=None, model=None, epochs=20, batch=256):
    try:
        start_time = time.time()
        if data is None:
            X_train, X_test, y_train, y_test = load_data()
        else:
            X_train, X_test, y_train, y_test = data

        if model is None:
            model = init_model()

        history = LossHistory()

        print 'Training model...'
        model.fit(X_train, y_train, nb_epoch=epochs, batch_size=batch,
                  callbacks=[history],
                  validation_data=(X_test, y_test), verbose=2)

        print "Training duration : {0}".format(time.time() - start_time)
        score = model.evaluate(X_test, y_test, batch_size=16)

        print "Network's test score [loss, accuracy]: {0}".format(score)
        return model, history.losses
    except KeyboardInterrupt:
        print ' KeyboardInterrupt'
        return model, history.losses
cnn_mnist.py 文件源码 项目:deep_learning_ex 作者: zatonovo 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def run_network(data=None, model=None, epochs=20, batch=BATCH_SIZE):
    try:
        start_time = time.time()
        if data is None:
            X_train, X_test, y_train, y_test = load_data()
        else:
            X_train, X_test, y_train, y_test = data

        if model is None:
            model = init_model()

        history = LossHistory()

        print 'Training model...'
        model.fit(X_train, y_train, nb_epoch=epochs, batch_size=batch,
                  callbacks=[history],
                  validation_data=(X_test, y_test), verbose=2)

        print "Training duration : {0}".format(time.time() - start_time)
        score = model.evaluate(X_test, y_test, batch_size=16)

        print "Network's test score [loss, accuracy]: {0}".format(score)
        return model, history.losses
    except KeyboardInterrupt:
        print ' KeyboardInterrupt'
        return model, history.losses
test_datasets.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_reuters():
    # only run data download tests 20% of the time
    # to speed up frequent testing
    random.seed(time.time())
    if random.random() > 0.8:
        (X_train, y_train), (X_test, y_test) = reuters.load_data()
        (X_train, y_train), (X_test, y_test) = reuters.load_data(maxlen=10)


问题


面经


文章

微信
公众号

扫码关注公众号