def test_nonneg():
nonneg_instance = constraints.nonneg()
normed = nonneg_instance(K.variable(example_array))
assert(np.all(np.min(K.eval(normed), axis=1) == 0.))
python类nonneg()的实例源码
def test_nonneg(self):
from keras.constraints import nonneg
nonneg_instance = nonneg()
normed = nonneg_instance(self.example_array)
assert (np.all(np.min(normed.eval(), axis=1) == 0.))
def test_nonneg():
nonneg_instance = constraints.nonneg()
normed = nonneg_instance(K.variable(example_array))
assert(np.all(np.min(K.eval(normed), axis=1) == 0.))
def test_nonneg():
nonneg_instance = constraints.nonneg()
normed = nonneg_instance(K.variable(example_array))
assert(np.all(np.min(K.eval(normed), axis=1) == 0.))
def test_nonneg(self):
from keras.constraints import nonneg
nonneg_instance = nonneg()
normed = nonneg_instance(self.example_array)
assert (np.all(np.min(normed.eval(), axis=1) == 0.))
def test_nonneg(self):
from keras.constraints import nonneg
nonneg_instance = nonneg()
normed = nonneg_instance(self.example_array)
assert (np.all(np.min(normed.eval(), axis=1) == 0.))