def build_model(max_length=1000,
nb_filters=64,
kernel_size=3,
pool_size=2,
regularization=0.01,
weight_constraint=2.,
dropout_prob=0.4,
clear_session=True):
if clear_session:
K.clear_session()
model = Sequential()
model.add(Embedding(
embeddings.shape[0],
embeddings.shape[1],
input_length=max_length,
trainable=False,
weights=[embeddings]))
model.add(Conv1D(nb_filters, kernel_size, activation='relu'))
model.add(Conv1D(nb_filters, kernel_size, activation='relu'))
model.add(MaxPooling1D(pool_size))
model.add(Dropout(dropout_prob))
model.add(Conv1D(nb_filters * 2, kernel_size, activation='relu'))
model.add(Conv1D(nb_filters * 2, kernel_size, activation='relu'))
model.add(MaxPooling1D(pool_size))
model.add(Dropout(dropout_prob))
model.add(GlobalAveragePooling1D())
model.add(Dense(1,
kernel_regularizer=l2(regularization),
kernel_constraint=maxnorm(weight_constraint),
activation='sigmoid'))
model.compile(
loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
return model
python类maxnorm()的实例源码
def create_model(data):
'''
Load keras model.
'''
# Entity branch
entity_inputs = Input(shape=(data[0].shape[1],))
entity_x = Dense(data[0].shape[1], activation='relu',
kernel_constraint=maxnorm(3))(entity_inputs)
entity_x = Dropout(0.25)(entity_x)
#entity_x = Dense(50, activation='relu',
# kernel_constraint=maxnorm(3))(entity_x)
#entity_x = Dropout(0.25)(entity_x)
# Candidate branch
candidate_inputs = Input(shape=(data[1].shape[1],))
candidate_x = Dense(data[1].shape[1], activation='relu',
kernel_constraint=maxnorm(3))(candidate_inputs)
candidate_x = Dropout(0.25)(candidate_x)
#candidate_x = Dense(50, activation='relu',
# kernel_constraint=maxnorm(3))(candidate_x)
#candidate_x = Dropout(0.25)(candidate_x)
# Cosine proximity
# cos_x = dot([entity_x, candidate_x], axes=1, normalize=False)
# cos_x = concatenate([entity_x, candidate_x])
# cos_output = Dense(1, activation='sigmoid')(cos_x)
# Match branch
match_inputs = Input(shape=(data[2].shape[1],))
match_x = Dense(data[1].shape[1], activation='relu',
kernel_constraint=maxnorm(3))(match_inputs)
match_x = Dropout(0.25)(match_x)
# Merge
x = concatenate([entity_x, candidate_x, match_x])
x = Dense(32, activation='relu', kernel_constraint=maxnorm(3))(x)
x = Dropout(0.25)(x)
x = Dense(16, activation='relu', kernel_constraint=maxnorm(3))(x)
x = Dropout(0.25)(x)
x = Dense(8, activation='relu', kernel_constraint=maxnorm(3))(x)
x = Dropout(0.25)(x)
predictions = Dense(1, activation='sigmoid')(x)
model = Model(inputs=[entity_inputs, candidate_inputs, match_inputs],
outputs=predictions)
model.compile(optimizer='RMSprop', loss='binary_crossentropy',
metrics=['accuracy'])
return model
def build_model(data, word_weights, max_len, tag_window=5, embed_dim=100, location_dim=10):
batch_size = 2048
nb_epoch = 16
nb_class = 4
hidden_dim = 128
train_x = np.array(list(data['x']))
train_l = np.array(list(data['l']))
train_y = np.array(list(data['y']))
train_y = np_utils.to_categorical(train_y, nb_class)
print(train_x.shape)
print(train_l.shape)
print(train_y.shape)
input_x = Input(shape=(tag_window, ), dtype='float32', name='input_x')
input_l = Input(shape=(tag_window, ), dtype='float32', name='input_l')
embed_x = Embedding(output_dim=embed_dim,
input_dim=word_weights.shape[0],
input_length=tag_window,
weights=[word_weights],
name='embed_x')(input_x)
embed_l = Embedding(output_dim=location_dim,
input_dim=max_len,
input_length=tag_window,
name='embed_l')(input_l)
merge_embed = merge([embed_x, embed_l],
mode='concat', concat_axis=2)
bi_lstm = Bidirectional(LSTM(hidden_dim, return_sequences=False), merge_mode='sum')(merge_embed)
x_dropout = Dropout(0.5)(bi_lstm)
x_output = Dense(nb_class,
# kernel_regularizer=regularizers.l2(0.01),
# kernel_constraint=maxnorm(3.0),
# activity_regularizer=regularizers.l2(0.01),
activation='softmax')(x_dropout)
model = Model(inputs=[input_x, input_l], outputs=[x_output])
model.compile(optimizer='adamax', loss='categorical_crossentropy',metrics=['accuracy'])
print('Train...')
model_path = './model/location_128hidden_2048batch'
modelcheckpoint = ModelCheckpoint(model_path, verbose=1, save_best_only=True)
model.fit([train_x, train_l], [train_y], validation_split=0.2,
batch_size=batch_size, epochs=nb_epoch, shuffle=True)