python类get()的实例源码

ConvHighway.py 文件源码 项目:HighwayNetwork 作者: trangptm 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, nb_filter, nb_row, nb_col, transform_bias=-1,
                 init='glorot_uniform', activation='relu', weights=None,
                 border_mode='same', subsample=(1, 1), dim_ordering='th',
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):

        if border_mode not in {'valid', 'same'}:
            raise Exception('Invalid border mode for Convolution2D:', border_mode)
        self.nb_filter = nb_filter
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.transform_bias = transform_bias
        self.init = initializations.get(init, dim_ordering=dim_ordering)
        self.activation = activations.get(activation)
        assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}'
        self.border_mode = border_mode
        self.subsample = tuple(subsample)
        assert dim_ordering in {'tf', 'th'}, 'dim_ordering must be in {tf, th}'
        self.dim_ordering = dim_ordering

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights
        super(Conv2DHighway, self).__init__(**kwargs)
Networks.py 文件源码 项目:KerasCog 作者: ABAtanasov 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, 
                 init = 'glorot_uniform', inner_init = 'orthogonal',
                 activation = 'tanh', W_regularizer = None, 
                 U_regularizer = None, b_regularizer = None, 
                 dropout_W = 0.0, dropout_U = 0.0,
                 tau=100, dt=20, noise=.1,
                 dale_ratio = None, **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.activation = activations.get(activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U
        self.tau = tau
        self.dt = dt
        self.noise = noise
        self.dale_ratio = dale_ratio
        if dale_ratio:

            #make dales law matrix
            dale_vec = np.ones(output_dim)
            dale_vec[int(dale_ratio*output_dim):] = -1
            dale = np.diag(dale_vec)
            self.Dale = K.variable(dale)
        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(leak_recurrent, self).__init__(**kwargs)
Networks.py 文件源码 项目:KerasCog 作者: ABAtanasov 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, init='glorot_uniform',
                 activation='linear', weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=False, input_dim=None, dale_ratio = .8, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=2)]

        # OUR CHANGE
        self.dale_ratio = dale_ratio
        if dale_ratio:
            dale_vec = np.ones((input_dim, 1))
            dale_vec[int(dale_ratio*input_dim):, 0] = 0
            self.Dale = K.variable(dale_vec)

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)

        super(Dense, self).__init__(**kwargs)
LSTMCNN.py 文件源码 项目:kchar 作者: jarfo 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self,
                 init='glorot_uniform',
                 activation=None,
                 weights=None,
                 W_regularizer=None,
                 b_regularizer=None,
                 activity_regularizer=None,
                 W_constraint=None,
                 b_constraint=None,
                 bias=True,
                 input_dim=None,
                 **kwargs):

        self.init = initializers.get(init)
        self.activation = activations.get(activation)

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = InputSpec(ndim=2)

        self.input_dim = input_dim
        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(Highway, self).__init__(**kwargs)
ATrousConvolution2D.py 文件源码 项目:neural_style 作者: metaflow-ai 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self, nb_filter, nb_row, nb_col, rate=2,
                 init='glorot_uniform', activation='linear', weights=None,
                 border_mode='valid', dim_ordering=K.image_dim_ordering(),
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):
        if K._BACKEND != 'tensorflow':
            raise Exception('TensorBoard callback only works '
                            'with the TensorFlow backend.')

        if border_mode not in {'valid', 'same'}:
            raise Exception('Invalid border mode for Convolution2D:', border_mode)
        self.nb_filter = nb_filter
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.rate = rate
        self.init = initializations.get(init, dim_ordering=dim_ordering)
        self.activation = activations.get(activation)
        assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}'
        self.border_mode = border_mode
        assert dim_ordering in {'tf', 'th'}, 'dim_ordering must be in {tf, th}'
        self.dim_ordering = dim_ordering

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights
        super(ATrousConvolution2D, self).__init__(**kwargs)
ConvolutionTranspose2D.py 文件源码 项目:neural_style 作者: metaflow-ai 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, nb_filter, nb_row, nb_col,
                 init='glorot_uniform', activation='linear', weights=None,
                 border_mode='valid', subsample=(1, 1), dim_ordering=K.image_dim_ordering(),
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):

        if border_mode not in {'valid', 'same'}:
            raise Exception('Invalid border mode for Convolution2D:', border_mode)
        self.nb_filter = nb_filter
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.dim_ordering = dim_ordering
        self.init = initializations.get(init, dim_ordering=self.dim_ordering)
        self.activation = activations.get(activation)
        assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}'
        self.border_mode = border_mode
        self.subsample = tuple(subsample)


        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights

        super(ConvolutionTranspose2D, self).__init__(**kwargs)
Scale.py 文件源码 项目:zhihu-machine-learning-challenge-2017 作者: HouJP 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, 
                 kernel_initializer=initializers.Constant(1.0),
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 bias_initializer='zeros',
                 bias_regularizer=None,
                 bias_constraint=None,
                 **kwargs):
        super(Scale, self).__init__(**kwargs)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_initializer = initializers.get(bias_initializer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.bias_constraint = constraints.get(bias_constraint)
AttLayer.py 文件源码 项目:kaggle-quora-solution-8th 作者: qqgeogor 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, step_dim,
                 W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):
        """
        Keras Layer that implements an Attention mechanism for temporal data.
        Supports Masking.
        Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
        # Input shape
            3D tensor with shape: `(samples, steps, features)`.
        # Output shape
            2D tensor with shape: `(samples, features)`.
        :param kwargs:
        Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
        The dimensions are inferred based on the output shape of the RNN.
        Example:
            model.add(LSTM(64, return_sequences=True))
            model.add(Attention(step_dim))
        """
        self.supports_masking = True
        # self.init = initializations.get('glorot_uniform')
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.step_dim = step_dim
        self.features_dim = 0
        super(Attention, self).__init__(**kwargs)
mf_lstm_att_sia_self.py 文件源码 项目:kaggle-quora-solution-8th 作者: qqgeogor 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def __init__(self, step_dim,
                 W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):
        """
        Keras Layer that implements an Attention mechanism for temporal data.
        Supports Masking.
        Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
        # Input shape
            3D tensor with shape: `(samples, steps, features)`.
        # Output shape
            2D tensor with shape: `(samples, features)`.
        :param kwargs:
        Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
        The dimensions are inferred based on the output shape of the RNN.
        Example:
            model.add(LSTM(64, return_sequences=True))
            model.add(Attention())
        """
        self.supports_masking = True
        #self.init = initializations.get('glorot_uniform')
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.step_dim = step_dim
        self.features_dim = 0
        super(Attention, self).__init__(**kwargs)
mf_lstm_att_siamese.py 文件源码 项目:kaggle-quora-solution-8th 作者: qqgeogor 项目源码 文件源码 阅读 14 收藏 0 点赞 0 评论 0
def __init__(self, step_dim,
                 W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):
        """
        Keras Layer that implements an Attention mechanism for temporal data.
        Supports Masking.
        Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
        # Input shape
            3D tensor with shape: `(samples, steps, features)`.
        # Output shape
            2D tensor with shape: `(samples, features)`.
        :param kwargs:
        Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
        The dimensions are inferred based on the output shape of the RNN.
        Example:
            model.add(LSTM(64, return_sequences=True))
            model.add(Attention())
        """
        self.supports_masking = True
        #self.init = initializations.get('glorot_uniform')
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.step_dim = step_dim
        self.features_dim = 0
        super(Attention, self).__init__(**kwargs)
mf_lstm_att.py 文件源码 项目:kaggle-quora-solution-8th 作者: qqgeogor 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self, step_dim,
                 W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):
        """
        Keras Layer that implements an Attention mechanism for temporal data.
        Supports Masking.
        Follows the work of Raffel et al. [https://arxiv.org/abs/1512.08756]
        # Input shape
            3D tensor with shape: `(samples, steps, features)`.
        # Output shape
            2D tensor with shape: `(samples, features)`.
        :param kwargs:
        Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
        The dimensions are inferred based on the output shape of the RNN.
        Example:
            model.add(LSTM(64, return_sequences=True))
            model.add(Attention())
        """
        self.supports_masking = True
        #self.init = initializations.get('glorot_uniform')
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.step_dim = step_dim
        self.features_dim = 0
        super(Attention, self).__init__(**kwargs)
model_library.py 文件源码 项目:CIAN 作者: yanghanxy 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self,
                 init='glorot_uniform',
                 activation=None,
                 weights=None,
                 W_regularizer=None,
                 b_regularizer=None,
                 activity_regularizer=None,
                 W_constraint=None,
                 b_constraint=None,
                 bias=True,
                 input_dim=None,
                 **kwargs):

        self.init = initializers.get(init)
        self.activation = activations.get(activation)

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = InputSpec(ndim=2)

        self.input_dim = input_dim
        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(Highway, self).__init__(**kwargs)
cells.py 文件源码 项目:recurrentshop 作者: farizrahman4u 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, units=None,
                 activation='tanh',
                 recurrent_activation='hard_sigmoid',
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 recurrent_initializer='orthogonal',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 recurrent_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 recurrent_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        if units is None:
            assert 'output_dim' in kwargs, 'Missing argument: units'
        else:
            kwargs['output_dim'] = units
        self.activation = activations.get(activation)
        self.recurrent_activation = activations.get(recurrent_activation)
        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.recurrent_initializer = initializers.get(recurrent_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.recurrent_constraint = constraints.get(recurrent_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        super(ExtendedRNNCell, self).__init__(**kwargs)
mobilenet.py 文件源码 项目:yolov2 作者: datlife 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self,
                 kernel_size,
                 strides=(1, 1),
                 padding='valid',
                 depth_multiplier=1,
                 data_format=None,
                 activation=None,
                 use_bias=True,
                 depthwise_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 depthwise_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 depthwise_constraint=None,
                 bias_constraint=None, **kwargs):

        super(DepthwiseConv2D, self).__init__(
            filters=None,
            kernel_size=kernel_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            activation=activation,
            use_bias=use_bias,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer,
            bias_constraint=bias_constraint,
            **kwargs)
        self.depth_multiplier = depth_multiplier
        self.depthwise_initializer = initializers.get(depthwise_initializer)
        self.depthwise_regularizer = regularizers.get(depthwise_regularizer)
        self.depthwise_constraint = constraints.get(depthwise_constraint)
        self.bias_initializer = initializers.get(bias_initializer)
multiplicative_lstm.py 文件源码 项目:Keras-Multiplicative-LSTM 作者: titu1994 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, units,
                 activation='tanh',
                 recurrent_activation='hard_sigmoid',
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 recurrent_initializer='orthogonal',
                 bias_initializer='zeros',
                 unit_forget_bias=True,
                 kernel_regularizer=None,
                 recurrent_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 recurrent_constraint=None,
                 bias_constraint=None,
                 dropout=0.,
                 recurrent_dropout=0.,
                 implementation=1,
                 **kwargs):
        super(MultiplicativeLSTM, self).__init__(**kwargs)
        self.units = units
        self.activation = activations.get(activation)
        self.recurrent_activation = activations.get(recurrent_activation)
        self.use_bias = use_bias

        self.kernel_initializer = initializers.get(kernel_initializer)
        self.recurrent_initializer = initializers.get(recurrent_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.unit_forget_bias = unit_forget_bias

        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.recurrent_regularizer = regularizers.get(recurrent_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.kernel_constraint = constraints.get(kernel_constraint)
        self.recurrent_constraint = constraints.get(recurrent_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        self.dropout = min(1., max(0., dropout))
        self.recurrent_dropout = min(1., max(0., recurrent_dropout))
        self.state_spec = [InputSpec(shape=(None, self.units)),
                           InputSpec(shape=(None, self.units))]
        self.state_size = (self.units, self.units)
        self.implementation = implementation
layers.py 文件源码 项目:keras-text 作者: raghakot 项目源码 文件源码 阅读 15 收藏 0 点赞 0 评论 0
def __init__(self,
                 kernel_initializer='he_normal',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 use_bias=True,
                 bias_initializer='zeros',
                 bias_regularizer=None,
                 bias_constraint=None,
                 use_context=True,
                 context_initializer='he_normal',
                 context_regularizer=None,
                 context_constraint=None,
                 attention_dims=None,
                 **kwargs):
        """
        Args:
            attention_dims: The dimensionality of the inner attention calculating neural network.
                For input `(32, 10, 300)`, with `attention_dims` of 100, the output is `(32, 10, 100)`.
                i.e., the attended words are 100 dimensional. This is then collapsed via summation to
                `(32, 10, 1)` to indicate the attention weights for 10 words.
                If set to None, `features` dims are used as `attention_dims`. (Default value: None)
        """
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)

        super(AttentionLayer, self).__init__(**kwargs)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)

        self.use_bias = use_bias
        self.bias_initializer = initializers.get(bias_initializer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.bias_constraint = constraints.get(bias_constraint)

        self.use_context = use_context
        self.context_initializer = initializers.get(context_initializer)
        self.context_regularizer = regularizers.get(context_regularizer)
        self.context_constraint = constraints.get(context_constraint)

        self.attention_dims = attention_dims
        self.supports_masking = True
mobilenets.py 文件源码 项目:MobileNetworks 作者: titu1994 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self,
                 kernel_size,
                 strides=(1, 1),
                 padding='valid',
                 depth_multiplier=1,
                 data_format=None,
                 activation=None,
                 use_bias=True,
                 depthwise_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 depthwise_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 depthwise_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super(DepthwiseConv2D, self).__init__(
            filters=None,
            kernel_size=kernel_size,
            strides=strides,
            padding=padding,
            data_format=data_format,
            activation=activation,
            use_bias=use_bias,
            bias_regularizer=bias_regularizer,
            activity_regularizer=activity_regularizer,
            bias_constraint=bias_constraint,
            **kwargs)
        self.depth_multiplier = depth_multiplier
        self.depthwise_initializer = initializers.get(depthwise_initializer)
        self.depthwise_regularizer = regularizers.get(depthwise_regularizer)
        self.depthwise_constraint = constraints.get(depthwise_constraint)
        self.bias_initializer = initializers.get(bias_initializer)

        self._padding = padding.upper()

        if K.image_data_format() == 'channels_last':
            self._strides = (1,) + strides + (1,)
        else:
            self._strides = (1, 1,) + strides

        if self.data_format == 'channels_last':
            self._data_format = "NHWC"
        else:
            self._data_format = "NCHW"
advanced_activations.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, a_initializer='ones',
                 k_initializer='ones',
                 n_initializer='ones',
                 z_initializer='zeros',
                 a_regularizer=None,
                 a_constraint=constraints.NonNeg(),
                 k_regularizer=None,
                 k_constraint=constraints.NonNeg(),
                 n_regularizer=None,
                 n_constraint=constraints.NonNeg(),  
                 z_regularizer=None,
                 z_constraint=constraints.NonNeg(),
                 shared_axes=None,
                 a_shared=True,
                 k_shared=True,
                 n_shared=True,
                 z_shared=True,
                 z_one=False,
                 **kwargs):
        super(Hill, self).__init__(**kwargs)
        self.supports_masking = True
        self.a_initializer = initializers.get(a_initializer)
        self.a_regularizer = regularizers.get(a_regularizer)
        self.a_constraint = constraints.get(a_constraint)
        self.k_initializer = initializers.get(a_initializer)
        self.k_regularizer = regularizers.get(a_regularizer)
        self.k_constraint = constraints.get(a_constraint)
        self.n_initializer = initializers.get(a_initializer)
        self.n_regularizer = regularizers.get(a_regularizer)
        self.n_constraint = constraints.get(a_constraint)
        self.z_initializer = initializers.get(a_initializer)
        self.z_regularizer = regularizers.get(a_regularizer)
        self.z_constraint = constraints.get(a_constraint)
        self.a_shared = a_shared
        self.k_shared = k_shared
        self.n_shared = n_shared
        self.z_shared = z_shared
        self.z_one = z_one
        if shared_axes is None:
            self.shared_axes = None
        elif not isinstance(shared_axes, (list, tuple)):
            self.shared_axes = [shared_axes]
        else:
            self.shared_axes = list(shared_axes)
custom_recurrents.py 文件源码 项目:keras-attention 作者: datalogue 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, units, output_dim,
                 activation='tanh',
                 return_probabilities=False,
                 name='AttentionDecoder',
                 kernel_initializer='glorot_uniform',
                 recurrent_initializer='orthogonal',
                 bias_initializer='zeros',
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        """
        Implements an AttentionDecoder that takes in a sequence encoded by an
        encoder and outputs the decoded states 
        :param units: dimension of the hidden state and the attention matrices
        :param output_dim: the number of labels in the output space

        references:
            Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 
            "Neural machine translation by jointly learning to align and translate." 
            arXiv preprint arXiv:1409.0473 (2014).
        """
        self.units = units
        self.output_dim = output_dim
        self.return_probabilities = return_probabilities
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.recurrent_initializer = initializers.get(recurrent_initializer)
        self.bias_initializer = initializers.get(bias_initializer)

        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.recurrent_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.kernel_constraint = constraints.get(kernel_constraint)
        self.recurrent_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        super(AttentionDecoder, self).__init__(**kwargs)
        self.name = name
        self.return_sequences = True  # must return sequences
yolo_layers.py 文件源码 项目:mcv-m5 作者: david-vazquez 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, nb_filter, nb_row, nb_col,
                 init='glorot_uniform', activation=None, weights=None,
                 border_mode='valid', subsample=(1, 1), dim_ordering='default',
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, epsilon=1e-3, momentum=0.99,
                 beta_init='zero', gamma_init='one',
                 gamma_regularizer=None, beta_regularizer=None, **kwargs):
        if dim_ordering == 'default':
            dim_ordering = K.image_dim_ordering()
        if border_mode not in {'valid', 'same', 'full'}:
            raise ValueError('Invalid border mode for Convolution2D:', border_mode)
        self.nb_filter = nb_filter
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.border_mode = border_mode
        self.subsample = tuple(subsample)
        if dim_ordering not in {'tf', 'th'}:
            raise ValueError('dim_ordering must be in {tf, th}.')
        self.dim_ordering = dim_ordering

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights
        # added for BatchNormalization
        self.supports_masking = True
        self.beta_init = initializations.get(beta_init)
        self.gamma_init = initializations.get(gamma_init)
        self.epsilon = epsilon
        self.momentum = momentum
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.initial_weights = weights
        self.uses_learning_phase = True
        super(YOLOConvolution2D, self).__init__(**kwargs)


问题


面经


文章

微信
公众号

扫码关注公众号