python类TensorBoard()的实例源码

core.py 文件源码 项目:enet-keras 作者: PavlosMelissinos 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def callbacks(self):
        """
        :return:
        """
        # TODO: Add ReduceLROnPlateau callback
        cbs = []

        tb = TensorBoard(log_dir=self.log_dir,
                         write_graph=True,
                         write_images=True)
        cbs.append(tb)

        best_model_filename = self.model_name + '_best.h5'
        best_model = os.path.join(self.checkpoint_dir, best_model_filename)
        save_best = ModelCheckpoint(best_model, save_best_only=True)
        cbs.append(save_best)

        checkpoints = ModelCheckpoint(filepath=self.checkpoint_file, verbose=1)
        cbs.append(checkpoints)

        reduce_lr = ReduceLROnPlateau(patience=1, verbose=1)
        cbs.append(reduce_lr)
        return cbs
testing_utils.py 文件源码 项目:ntm_keras 作者: flomlo 项目源码 文件源码 阅读 54 收藏 0 点赞 0 评论 0
def lengthy_test(model, testrange=[5,10,20,40,80], epochs=100, verboose=True):
    ts = datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
    log_path = LOG_PATH_BASE + ts + "_-_" + model.name 
    tensorboard = TensorBoard(log_dir=log_path,
                                write_graph=False, #This eats a lot of space. Enable with caution!
                                #histogram_freq = 1,
                                write_images=True,
                                batch_size = model.batch_size,
                                write_grads=True)
    model_saver =  ModelCheckpoint(log_path + "/model.ckpt.{epoch:04d}.hdf5", monitor='loss', period=1)
    callbacks = [tensorboard, TerminateOnNaN(), model_saver]

    for i in testrange:
        acc = test_model(model, sequence_length=i, verboose=verboose)
        print("the accuracy for length {0} was: {1}%".format(i,acc))

    train_model(model, epochs=epochs, callbacks=callbacks, verboose=verboose)

    for i in testrange:
        acc = test_model(model, sequence_length=i, verboose=verboose)
        print("the accuracy for length {0} was: {1}%".format(i,acc))
    return
train.py 文件源码 项目:Digit-Classifier 作者: ardamavi 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def train_model(model, X, X_test, Y, Y_test):

    batch_size = 100
    epochs = 2

    checkpoints = []
    if not os.path.exists('Data/Checkpoints/'):
        os.makedirs('Data/Checkpoints/')
    checkpoints.append(ModelCheckpoint('Data/Checkpoints/best_weights.h5', monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1))
    checkpoints.append(TensorBoard(log_dir='Data/Checkpoints/./logs', histogram_freq=0, write_graph=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None))

    # Creates live data:
    # For better yield. The duration of the training is extended.

    # If you don't want, use this:
    # model.fit(X, Y, batch_size=batch_size, epochs=epochs, validation_data=(X_test, Y_test), shuffle=True, callbacks=checkpoints)

    generated_data = ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0,  width_shift_range=0.1, height_shift_range=0.1, horizontal_flip = True, vertical_flip = False)
    generated_data.fit(X)

    model.fit_generator(generated_data.flow(X, Y, batch_size=batch_size), steps_per_epoch=X.shape[0]/6, epochs=epochs, validation_data=(X_test, Y_test), callbacks=checkpoints)

    return model
train_bts.py 文件源码 项目:Msc_Multi_label_ZeroShot 作者: thomasSve 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def train_multilabel_bts(lang_db, imdb, pretrained, max_iters = 1000, loss_func = 'squared_hinge', box_method = 'random'):
    # Create callback_list.
    dir_path = osp.join('output', 'bts_ckpt', imdb.name)
    tensor_path = osp.join(dir_path, 'log_dir')
    if not osp.exists(dir_path):
        os.makedirs(dir_path)
    if not osp.exists(tensor_path):
        os.makedirs(tensor_path)

    ckpt_save = osp.join(dir_path, lang_db.name + '_multi_label_fixed_' + 'weights-{epoch:02d}.hdf5')
    checkpoint = ModelCheckpoint(ckpt_save, monitor='loss', verbose=1, save_best_only=True)
    early_stop = EarlyStopping(monitor='loss', min_delta=0, patience=3, verbose=0, mode='auto')
    tensorboard = TensorBoard(log_dir=dir_path, histogram_freq=2000, write_graph=True, write_images=False)
    callback_list = [checkpoint, early_stop, tensorboard]
    pretrained.fit_generator(load_multilabel_data(imdb, lang_db, pretrained, box_method),
                             steps_per_epoch = 5000,
                             epochs = max_iters,
                             verbose = 1,
                             callbacks = callback_list,
                             workers = 1)

    pretrained.save(osp.join(dir_path, 'model_fixed' + imdb.name + '_' + lang_db.name + '_ML_' + box_method + '_' + loss_func + '.hdf5'))
main_residual_network.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def train():
    model = build_main_residual_network(BATCH_SIZE,MAX_TIME_STEP,INPUT_DIM,OUTPUT_DIM,loop_depth=DEPTH)

    # deal with x,y



    # x_train = x


    model.fit(x_train, y_train, validation_split=0.1, epochs=50  , callbacks=[TensorBoard(log_dir='./residual_cnn_dir_deep_%s_all'%(DEPTH))])

    import random

    randomIndex = random.randint(0, SAMPLE_NUM)

    print('Selecting- %s as the sample' % (randomIndex))

    pred = model.predict(x_train[randomIndex:randomIndex + 1])

    print(pred)

    print(y_train[randomIndex])

    model.save(MODEL_PATH)
model.py 文件源码 项目:MSgothicPolice 作者: ysdyt 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def _build_callbacks(self):
        """Build callback objects.

        Returns:
            A list containing the following callback objects:
                - TensorBoard
                - ModelCheckpoint
        """

        tensorboard_path = os.path.join(self.checkpoints_path, 'tensorboard')
        tensorboard = TensorBoard(log_dir=tensorboard_path)

        checkpoint_path = os.path.join(self.checkpoints_path, self.checkpoint_file_format)
        checkpointer = ModelCheckpoint(filepath=checkpoint_path, verbose=1, save_best_only=self.save_best_only)

        return [tensorboard, checkpointer]
model.py 文件源码 项目:MSgothicPolice 作者: ysdyt 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _build_callbacks(self):
        """Build callback objects.

        Returns:
            A list containing the following callback objects:
                - TensorBoard
                - ModelCheckpoint
        """

        tensorboard_path = os.path.join(self.checkpoints_path, 'tensorboard')
        tensorboard = TensorBoard(log_dir=tensorboard_path)

        checkpoint_path = os.path.join(self.checkpoints_path, self.checkpoint_file_format)
        checkpointer = ModelCheckpoint(filepath=checkpoint_path, verbose=1, save_best_only=self.save_best_only)

        return [tensorboard, checkpointer]
run_utils.py 文件源码 项目:deep-mlsa 作者: spinningbytes 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def get_callbacks(config_data, appendix=''):
    ret_callbacks = []
    model_stored = False
    callbacks = config_data['callbacks']
    if K._BACKEND == 'tensorflow':
        tensor_board = TensorBoard(log_dir=os.path.join('logging', config_data['tb_log_dir']), histogram_freq=10)
        ret_callbacks.append(tensor_board)
    for callback in callbacks:
        if callback['name'] == 'early_stopping':
            ret_callbacks.append(EarlyStopping(monitor=callback['monitor'], patience=callback['patience'], verbose=callback['verbose'], mode=callback['mode']))
        elif callback['name'] == 'model_checkpoit':
            model_stored = True
            path = config_data['output_path']
            basename = config_data['output_basename']
            base_path = os.path.join(path, basename)
            opath = os.path.join(base_path, 'best_model{}.h5'.format(appendix))
            save_best = bool(callback['save_best_only'])
            ret_callbacks.append(ModelCheckpoint(filepath=opath, verbose=callback['verbose'], save_best_only=save_best, monitor=callback['monitor'], mode=callback['mode']))
    return ret_callbacks, model_stored
MLP.py 文件源码 项目:DL_for_xss 作者: SparkSharly 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def train(train_generator,train_size,input_num,dims_num):
    print("Start Train Job! ")
    start=time.time()
    inputs=InputLayer(input_shape=(input_num,dims_num),batch_size=batch_size)
    layer1=Dense(100,activation="relu")
    layer2=Dense(20,activation="relu")
    flatten=Flatten()
    layer3=Dense(2,activation="softmax",name="Output")
    optimizer=Adam()
    model=Sequential()
    model.add(inputs)
    model.add(layer1)
    model.add(Dropout(0.5))
    model.add(layer2)
    model.add(Dropout(0.5))
    model.add(flatten)
    model.add(layer3)
    call=TensorBoard(log_dir=log_dir,write_grads=True,histogram_freq=1)
    model.compile(optimizer,loss="categorical_crossentropy",metrics=["accuracy"])
    model.fit_generator(train_generator,steps_per_epoch=train_size//batch_size,epochs=epochs_num,callbacks=[call])
#    model.fit_generator(train_generator, steps_per_epoch=5, epochs=5, callbacks=[call])
    model.save(model_dir)
    end=time.time()
    print("Over train job in %f s"%(end-start))
LSTM.py 文件源码 项目:DL_for_xss 作者: SparkSharly 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def train(train_generator,train_size,input_num,dims_num):
    print("Start Train Job! ")
    start=time.time()
    inputs=InputLayer(input_shape=(input_num,dims_num),batch_size=batch_size)
    layer1=LSTM(128)
    output=Dense(2,activation="softmax",name="Output")
    optimizer=Adam()
    model=Sequential()
    model.add(inputs)
    model.add(layer1)
    model.add(Dropout(0.5))
    model.add(output)
    call=TensorBoard(log_dir=log_dir,write_grads=True,histogram_freq=1)
    model.compile(optimizer,loss="categorical_crossentropy",metrics=["accuracy"])
    model.fit_generator(train_generator,steps_per_epoch=train_size//batch_size,epochs=epochs_num,callbacks=[call])
#    model.fit_generator(train_generator, steps_per_epoch=5, epochs=5, callbacks=[call])
    model.save(model_dir)
    end=time.time()
    print("Over train job in %f s"%(end-start))
main.py 文件源码 项目:VariationalAutoEncoder 作者: despoisj 项目源码 文件源码 阅读 63 收藏 0 点赞 0 评论 0
def trainModel():
    # Create models
    print("Creating VAE...")
    vae, _, _ = getModels()
    vae.compile(optimizer='rmsprop', loss=VAELoss)

    print("Loading dataset...")
    X_train, X_test = loadDataset()
    X_train = X_train
    X_test = X_test

    # Train the VAE on dataset
    print("Training VAE...")
    runID = "VAE - ZZZ"
    tb = TensorBoard(log_dir='/tmp/logs/'+runID)
    vae.fit(X_train, X_train, shuffle=True, nb_epoch=nbEpoch, batch_size=batchSize, validation_data=(X_test, X_test), callbacks=[tb])

    # Serialize weights to HDF5
    print("Saving weights...")
    vae.save_weights(modelsPath+"model.h5")

# Generates images and plots
GAN.py 文件源码 项目:2017_iv_deep_radar 作者: tawheeler 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def train_discriminator(nsteps):
        mean_loss = 0.0
        for i in range(1,nsteps):
            # pick real samples
            batch_indeces = np.random.randint(0,O_train.shape[0],args.batch_size)
            y_real = Y_train[batch_indeces,:,:,:]

            # pick fake samples
            batch_indeces = np.random.randint(0,O_train.shape[0],args.batch_size)
            o_in = O_train[batch_indeces,:,:,:]
            t_in = T_train[batch_indeces,:,:,:]
            y_in = Y_train[batch_indeces,:,:,:]
            y_fake = generator.predict([o_in, t_in, y_in])[0]

            # train
            y_disc = np.vstack([y_real, y_fake])
            r = adversary.fit(y_disc, d_disc,
                              #callbacks=[TensorBoard(log_dir=args.tblog + '_D', write_graph=False)],
                              verbose=0)
            loss = r.history['loss'][0]
            mean_loss = mean_loss + loss
        return mean_loss / nsteps
keras_spell.py 文件源码 项目:DeepSpell_temp 作者: surmenok 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def iterate_training(model, dataset, initial_epoch):
    """Iterative Training"""

    checkpoint = ModelCheckpoint(MODEL_CHECKPOINT_DIRECTORYNAME + '/' + MODEL_CHECKPOINT_FILENAME,
                                 save_best_only=True)
    tensorboard = TensorBoard()
    csv_logger = CSVLogger(CSV_LOG_FILENAME)

    X_dev_batch, y_dev_batch = next(dataset.dev_set_batch_generator(1000))
    show_samples_callback = LambdaCallback(
        on_epoch_end=lambda epoch, logs: show_samples(model, dataset, epoch, logs, X_dev_batch, y_dev_batch))

    train_batch_generator = dataset.train_set_batch_generator(BATCH_SIZE)
    validation_batch_generator = dataset.dev_set_batch_generator(BATCH_SIZE)

    model.fit_generator(train_batch_generator,
                        samples_per_epoch=SAMPLES_PER_EPOCH,
                        nb_epoch=NUMBER_OF_EPOCHS,
                        validation_data=validation_batch_generator,
                        nb_val_samples=SAMPLES_PER_EPOCH,
                        callbacks=[checkpoint, tensorboard, csv_logger, show_samples_callback],
                        verbose=1,
                        initial_epoch=initial_epoch)
train.py 文件源码 项目:Cat-Segmentation 作者: ardamavi 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def train_model(model, X, X_test, Y, Y_test):
    if not os.path.exists('Data/Checkpoints/'):
        os.makedirs('Data/Checkpoints/')
    checkpoints = []
    checkpoints.append(ModelCheckpoint('Data/Checkpoints/best_weights.h5', monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1))
    checkpoints.append(TensorBoard(log_dir='Data/Checkpoints/./logs', histogram_freq=0, write_graph=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None))

    model.fit(X, Y, batch_size=batch_size, epochs=epochs, validation_data=(X_test, Y_test), shuffle=True, callbacks=checkpoints)

    return model
net.py 文件源码 项目:speechless 作者: JuliusKunze 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def create_callbacks(self, callback: Callable[[], None], tensor_board_log_directory: Path, net_directory: Path,
                         callback_step: int = 1, save_step: int = 1) -> List[Callback]:
        class CustomCallback(Callback):
            def on_epoch_end(self_callback, epoch, logs=()):
                if epoch % callback_step == 0:
                    callback()

                if epoch % save_step == 0 and epoch > 0:
                    mkdir(net_directory)

                    self.predictive_net.save_weights(str(net_directory / self.model_file_name(epoch)))

        tensorboard_if_running_tensorflow = [TensorBoard(
            log_dir=str(tensor_board_log_directory), write_images=True)] if backend.backend() == 'tensorflow' else []
        return tensorboard_if_running_tensorflow + [CustomCallback()]
gossip.py 文件源码 项目:DeepTrade_keras 作者: happynoom 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def make_model(input_shape, nb_epochs=100, batch_size=128, lr=0.01, n_layers=1, n_hidden=16, rate_dropout=0.3):
    model_path = 'model.%s' % input_shape[0]
    wp = WindPuller(input_shape=input_shape, lr=lr, n_layers=n_layers, n_hidden=n_hidden, rate_dropout=rate_dropout)
    train_set, test_set = read_ultimate("./", input_shape)
    wp.fit(train_set.images, train_set.labels, batch_size=batch_size,
           nb_epoch=nb_epochs, shuffle=True, verbose=1,
           validation_data=(test_set.images, test_set.labels),
           callbacks=[TensorBoard(histogram_freq=1),
                      ModelCheckpoint(filepath=model_path+'.best', save_best_only=True, mode='min')])
    scores = wp.evaluate(test_set.images, test_set.labels, verbose=0)
    print('Test loss:', scores[0])
    print('Test accuracy:', scores[1])

    wp.model.save(model_path)
    saved_wp = wp.load_model(model_path)
    scores = saved_wp.evaluate(test_set.images, test_set.labels, verbose=0)
    print('Test loss:', scores[0])
    print('test accuracy:', scores[1])
    pred = saved_wp.predict(test_set.images, 1024)
    # print(pred)
    # print(test_set.labels)
    pred = numpy.reshape(pred, [-1])
    result = numpy.array([pred, test_set.labels]).transpose()
    with open('output.' + str(input_shape[0]), 'w') as fp:
        for i in range(result.shape[0]):
            for val in result[i]:
                fp.write(str(val) + "\t")
            fp.write('\n')
test_callbacks.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def test_TensorBoard_with_ReduceLROnPlateau():
    import shutil
    filepath = './logs'
    (X_train, y_train), (X_test, y_test) = get_test_data(nb_train=train_samples,
                                                         nb_test=test_samples,
                                                         input_shape=(input_dim,),
                                                         classification=True,
                                                         nb_class=nb_class)
    y_test = np_utils.to_categorical(y_test)
    y_train = np_utils.to_categorical(y_train)

    model = Sequential()
    model.add(Dense(nb_hidden, input_dim=input_dim, activation='relu'))
    model.add(Dense(nb_class, activation='softmax'))
    model.compile(loss='binary_crossentropy',
                  optimizer='sgd',
                  metrics=['accuracy'])

    cbks = [
        callbacks.ReduceLROnPlateau(
            monitor='val_loss',
            factor=0.5,
            patience=4,
            verbose=1),
        callbacks.TensorBoard(
            log_dir=filepath)]

    model.fit(X_train, y_train, batch_size=batch_size,
              validation_data=(X_test, y_test), callbacks=cbks, nb_epoch=2)

    assert os.path.exists(filepath)
    shutil.rmtree(filepath)
train.py 文件源码 项目:midi-rnn 作者: brannondorsey 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_callbacks(experiment_dir, checkpoint_monitor='val_acc'):

    callbacks = []

    # save model checkpoints
    filepath = os.path.join(experiment_dir, 
                            'checkpoints', 
                            'checkpoint-epoch_{epoch:03d}-val_acc_{val_acc:.3f}.hdf5')

    callbacks.append(ModelCheckpoint(filepath, 
                                     monitor=checkpoint_monitor, 
                                     verbose=1, 
                                     save_best_only=False, 
                                     mode='max'))

    callbacks.append(ReduceLROnPlateau(monitor='val_loss', 
                                       factor=0.5, 
                                       patience=3, 
                                       verbose=1, 
                                       mode='auto', 
                                       epsilon=0.0001, 
                                       cooldown=0, 
                                       min_lr=0))

    callbacks.append(TensorBoard(log_dir=os.path.join(experiment_dir, 'tensorboard-logs'), 
                                histogram_freq=0, 
                                write_graph=True, 
                                write_images=False))

    return callbacks
train.py 文件源码 项目:Controller-Hand 作者: ardamavi 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def train_model(model, X, X_test, Y, Y_test):
    checkpoints = []
    if not os.path.exists('Data/Checkpoints/'):
        os.makedirs('Data/Checkpoints/')

    checkpoints.append(ModelCheckpoint('Data/Checkpoints/best_weights.h5', monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1))
    checkpoints.append(TensorBoard(log_dir='Data/Checkpoints/./logs', histogram_freq=0, write_graph=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None))

    model.fit(X, Y, batch_size=batch_size, epochs=epochs, validation_data=(X_test, Y_test), shuffle=True, callbacks=checkpoints)

    return model
main.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def train():
    model = build_stateful_lstm_model(BATCH_SIZE, TIME_STEP, INPUT_DIM, OUTPUT_DIM, dropout=0.1)

    # model.fit(x_train,y_train,validation_data=(x_train[:10],y_train[:10]),epochs=5,callbacks=[TensorBoard()],batch_size=1)

    for index, y_dat in enumerate(y):
        print('Run test on %s' % (index))
        model.fit(np.array([x[index]]), y_dat.reshape(1, 3),
                  validation_data=(np.array([x[index]]), y_dat.reshape(1, 3)), epochs=10, callbacks=[TensorBoard()])
        model.save(MODEL_PATH)
        x_pred = model.predict(np.array([x[index]]))
        print(x_pred)
        print(y_dat)

    model.save(MODEL_PATH)
test_directed_timestep_LSTM.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 60 收藏 0 点赞 0 评论 0
def train():
    model = build_real_stateful_lstm_model_with_normalization(BATCH_SIZE, TIME_STEP, INPUT_DIM, OUTPUT_DIM)

    # deal with x,y



    # x_train = x


    model.fit(x_train[:SAMPLE_NUM//BATCH_SIZE*BATCH_SIZE],
              y_train[:SAMPLE_NUM//BATCH_SIZE*BATCH_SIZE],
              batch_size=BATCH_SIZE,
              validation_split=0,
              epochs=30, callbacks=[TensorBoard(log_dir='./stateful_lstm_fixed')])

    # for index,y_dat in enumerate(y):
    #     print('Run test on %s' %(index))
    #     # print(y_dat.reshape(3,1))
    #     model.fit(np.array([x[index]]),np.array([y_dat.reshape(1,3)]),validation_data=(np.array([x[index]]),np.array([y_dat.reshape(1,3)])),epochs=100,callbacks=[TensorBoard()])
    #     model.save(MODEL_PATH)
    #     x_pred = model.predict(np.array([x[index]]))
    #     print(x_pred,x_pred.shape)
    #     print(np.array([y_dat.reshape(1,3)]))

    import random

    randomIndex = random.randint(0, SAMPLE_NUM)

    print('Selecting %s as the sample' % (randomIndex))

    pred = model.predict(x_train[randomIndex:randomIndex + 1])

    print(pred)

    print(y_train[randomIndex])

    model.save(MODEL_PATH)
main_residual_network_freq.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def train():
    print('Done')
    model = build_2d_main_residual_network(BATCH_SIZE,MAX_TIME_STEP,INPUT_DIM,2,OUTPUT_DIM,loop_depth=DEPTH)
    # model = build_main_residual_network(BATCH_SIZE,MAX_TIME_STEP,INPUT_DIM,OUTPUT_DIM,loop_depth=DEPTH)

    # deal with x,y



    # x_train = x


    model.fit(x_train, y_train, validation_split=0.1, epochs=50, callbacks=[TensorBoard(log_dir='./residual_freq_cnn_dir_deep_%s_all'%(DEPTH))])

    import random

    randomIndex = random.randint(0, SAMPLE_NUM)

    print('Selecting- %s as the sample' % (randomIndex))

    pred = model.predict(x_train[randomIndex:randomIndex + 1])

    print(pred)

    print(y_train[randomIndex])

    model.save(MODEL_PATH)
main_normaliztion_lstm.py 文件源码 项目:keras_detect_tool_wear 作者: kidozh 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def train():
    model = build_stateful_lstm_model_with_normalization(BATCH_SIZE, TIME_STEP, INPUT_DIM, OUTPUT_DIM, dropout=0.1)

    # model.fit(x_train,y_train,validation_data=(x_train[:10],y_train[:10]),epochs=5,callbacks=[TensorBoard()],batch_size=1)

    for index, y_dat in enumerate(y):
        print('Run test on %s' % (index))
        model.fit(np.array([x[index]]), y_dat.reshape(1, 3),
                  validation_data=(np.array([x[index]]), y_dat.reshape(1, 3)), epochs=10, callbacks=[TensorBoard()])
        model.save(MODEL_PATH)
        x_pred = model.predict(np.array([x[index]]))
        print(x_pred)
        print(y_dat)

    model.save(MODEL_PATH)
train_bts.py 文件源码 项目:Msc_Multi_label_ZeroShot 作者: thomasSve 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def train_bts(lang_db, imdb, max_iters = 1000, loss = 'squared_hinge'):
    # Define network
    model = define_network(lang_db.vector_size, loss)

    #model = load_model(osp.join('output', 'bts_ckpt', 'imagenet1k_train_bts', 'glove_wiki_300_hinge_weights-03.hdf5'))

    # Create callback_list.
    dir_path = osp.join('output', 'bts_ckpt', imdb.name)
    if not osp.exists(dir_path):
        os.makedirs(dir_path)

    log_dir = osp.join('output', 'bts_logs', imdb.name)
    if not osp.exists(log_dir):
        os.makedirs(log_dir)

    ckpt_save = osp.join(dir_path, lang_db.name + "_" + loss + "_weights-{epoch:02d}.hdf5")
    checkpoint = ModelCheckpoint(ckpt_save, monitor='val_loss', verbose=1, save_best_only = True)
    early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=0, mode='auto')

    tensorboard = TensorBoard(log_dir=log_dir, histogram_freq=0, write_graph=True, write_images=False)
    callback_list = [checkpoint, early_stop, tensorboard]
    model.fit_generator(load_data(imdb, lang_db),
                        steps_per_epoch = 5000,
                        epochs = max_iters,
                        verbose = 1,
                        validation_data = imdb.load_val_data(lang_db),
                        validation_steps = 20000, # number of images to validate on
                        callbacks = callback_list,
                        workers = 1)

    model.save(osp.join(dir_path, 'model_'  + imdb.name + '_' + lang_db.name + '_' + loss + '_l2.hdf5'))
test_callbacks.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_TensorBoard_with_ReduceLROnPlateau():
    import shutil
    filepath = './logs'
    (X_train, y_train), (X_test, y_test) = get_test_data(nb_train=train_samples,
                                                         nb_test=test_samples,
                                                         input_shape=(input_dim,),
                                                         classification=True,
                                                         nb_class=nb_class)
    y_test = np_utils.to_categorical(y_test)
    y_train = np_utils.to_categorical(y_train)

    model = Sequential()
    model.add(Dense(nb_hidden, input_dim=input_dim, activation='relu'))
    model.add(Dense(nb_class, activation='softmax'))
    model.compile(loss='binary_crossentropy',
                  optimizer='sgd',
                  metrics=['accuracy'])

    cbks = [
        callbacks.ReduceLROnPlateau(
            monitor='val_loss',
            factor=0.5,
            patience=4,
            verbose=1),
        callbacks.TensorBoard(
            log_dir=filepath)]

    model.fit(X_train, y_train, batch_size=batch_size,
              validation_data=(X_test, y_test), callbacks=cbks, nb_epoch=2)

    assert os.path.exists(filepath)
    shutil.rmtree(filepath)
autoencoder.py 文件源码 项目:dsde-deep-learning 作者: broadinstitute 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def conv_autoencode_mnist():
    (x_train, y_train), (x_test, y_test) = load_mnist(flatten=False)
    autoencoder = build_conv_autoencoder()
    autoencoder.summary()
    autoencoder.fit(x_train, x_train,
        epochs=55,
        batch_size=128,
        shuffle=True,
        validation_data=(x_test, x_test),
        callbacks=[TensorBoard(log_dir='./tmp/autoencoder')])   

    decoded_imgs = autoencoder.predict(x_test)
    plot_imgs_and_reconstructions(x_test, decoded_imgs, n=10)
autoencoder.py 文件源码 项目:dsde-deep-learning 作者: broadinstitute 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def conv_autoencode_cifar():
    (x_train, y_train), (x_test, y_test) = load_cifar(flatten=False)
    autoencoder = build_conv_autoencoder(input_dim=(32,32,3))
    autoencoder.summary()

    autoencoder.fit(x_train, x_train,
        epochs=25,
        batch_size=64,
        shuffle=True,
        validation_data=(x_test, x_test),
        callbacks=[TensorBoard(log_dir='./tmp/autoencoder')])   

    decoded_imgs = autoencoder.predict(x_test)
    plot_imgs_and_reconstructions(x_test, decoded_imgs, n=10, shape=(32,32,3))
train.py 文件源码 项目:Jetson-RaceCar-AI 作者: ardamavi 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def train_model(model, X_1, X_2, Y):

    batch_size = 1
    epochs = 10

    checkpoints = []
    if not os.path.exists('Data/Checkpoints/'):
        os.makedirs('Data/Checkpoints/')
    checkpoints.append(ModelCheckpoint('Data/Checkpoints/best_weights.h5', monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1))
    checkpoints.append(TensorBoard(log_dir='Data/Checkpoints/./logs', histogram_freq=0, write_graph=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None))

    model.fit([X_1, X_2], Y, batch_size=batch_size, epochs=epochs, validation_data=([X_1, X_2], Y), shuffle=True, callbacks=checkpoints)

    return model
framework.py 文件源码 项目:lang2program 作者: kelvinguu 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def train(self, train_batches, valid_batches, samples_per_epoch, nb_epoch, nb_val_samples, extra_callbacks=None):
        """Train the model.

        Automatically adds the following Keras callbacks:
            - ModelCheckpoint
            - EarlyStopping
            - TensorBoard

        Args:
            train_batches (Iterable[Batch]): an iterable of training Batches
            valid_batches (Iterable[Batch]): an iterable of validation Batches
            samples_per_epoch (int)
            nb_epoch (int): max number of epochs to train for
            nb_val_samples (int): number of samples for validation
            extra_callbacks (list): a list of additional Keras callbacks to run
        """
        checkpoint_path = join(self.checkpoint_dir, 'weights.{epoch:02d}-{val_loss:.2f}.hdf5')
        checkpointer = ModelCheckpoint(checkpoint_path, verbose=1, save_best_only=False)
        early_stopper = EarlyStopping(monitor='val_loss', patience=2, verbose=1)
        tboard = TensorBoard(self.tensorboard_dir, write_graph=False)

        callbacks = [checkpointer, early_stopper, tboard]
        if extra_callbacks:
            callbacks.extend(extra_callbacks)

        train = self._vectorized_batches(train_batches)
        valid = self._vectorized_batches(valid_batches)

        self.keras_model.fit_generator(train, samples_per_epoch, nb_epoch,
                                       callbacks=callbacks,
                                       validation_data=valid, nb_val_samples=nb_val_samples
                                       )
framework.py 文件源码 项目:lang2program 作者: kelvinguu 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def train(self, train_batches, valid_batches, samples_per_epoch, nb_epoch, nb_val_samples, extra_callbacks=None):
        """Train the model.

        Automatically adds the following Keras callbacks:
            - ModelCheckpoint
            - EarlyStopping
            - TensorBoard

        Args:
            train_batches (Iterable[Batch]): an iterable of training Batches
            valid_batches (Iterable[Batch]): an iterable of validation Batches
            samples_per_epoch (int)
            nb_epoch (int): max number of epochs to train for
            nb_val_samples (int): number of samples for validation
            extra_callbacks (list): a list of additional Keras callbacks to run
        """
        checkpoint_path = join(self.checkpoint_dir, 'weights.{epoch:02d}-{val_loss:.2f}.hdf5')
        checkpointer = ModelCheckpoint(checkpoint_path, verbose=1, save_best_only=False)
        early_stopper = EarlyStopping(monitor='val_loss', patience=2, verbose=1)
        tboard = TensorBoard(self.tensorboard_dir, write_graph=False)

        callbacks = [checkpointer, early_stopper, tboard]
        if extra_callbacks:
            callbacks.extend(extra_callbacks)

        train = self._vectorized_batches(train_batches)
        valid = self._vectorized_batches(valid_batches)

        self.keras_model.fit_generator(train, samples_per_epoch, nb_epoch,
                                       callbacks=callbacks,
                                       validation_data=valid, nb_val_samples=nb_val_samples
                                       )


问题


面经


文章

微信
公众号

扫码关注公众号