python类Callback()的实例源码

code_keras.py 文件源码 项目:kaggle_airbnb 作者: svegapons 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, monitor='val_loss', patience=0, verbose=0, mode='auto'):
        super(Callback, self).__init__()

        self.monitor = monitor
        self.patience = patience
        self.verbose = verbose
        self.wait = 0
        self.best_epoch = 0

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf
callbacks.py 文件源码 项目:mctest-model 作者: Maluuba 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, monitor='val_loss', cut_ratio=0.5, patience=2, scheduled_start_epoch=1, scheduled_cut_ratio=1.):
        """
        Args:
            monitor: quantity to be monitored.
            cut_ratio: cut the learning rate by this percent.
            patience: number of epochs with no improvement
                after which training will be stopped.
            scheduled_start_epoch: from which epoch to do scheduled learning rate discount
            scheduled_cut_ratio: learning rate discount ratio.
        """
        super(Callback, self).__init__()
        self.monitor = monitor
        self.patience = patience
        self.best = np.Inf
        self.wait = 0
        self.cut_ratio = cut_ratio
        self.monitor_decrease = False
        self.scheduled_start_epoch = scheduled_start_epoch
        self.scheduled_cut_ratio = scheduled_cut_ratio
callbacks.py 文件源码 项目:visual_turing_test-tutorial 作者: mateuszmalinowski 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, filepath, epoch_interval, verbose=0):
        """
        In:
            filepath - formattable filepath; possibilities:
                * weights.{epoch:02d}
                * weights.{era:02d}
            epoch_interval - 
                number of epochs that must be passed from the previous saving
            verbose - if nonzero then print out information on stdout;
                by default 0
        """
        super(KerasCallback, self).__init__()
        self.filepath = filepath
        self.epoch_interval = epoch_interval
        self.verbose = verbose
        self.era = 0
callbacks.py 文件源码 项目:visual_turing_test-tutorial 作者: mateuszmalinowski 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, 
            patience=0, reduce_rate=0.5, reduce_nb=10, 
            is_early_stopping=True, verbose=1):
        """
        In:
            patience - number of beginning epochs without reduction; 
                by default 0
            reduce_rate - multiplicative rate reducer; by default 0.5
            reduce_nb - maximal number of reductions performed; by default 10
            is_early_stopping - if true then early stopping is applied when
                reduce_nb is reached; by default True
            verbose - verbosity level; by default 1
        """
        super(KerasCallback, self).__init__()
        self.patience = patience
        self.wait = 0
        self.best_score = -1.
        self.reduce_rate = reduce_rate
        self.current_reduce_nb = 0
        self.reduce_nb = reduce_nb
        self.is_early_stopping = is_early_stopping
        self.verbose = verbose
        self.epsilon = 0.1e-10
callbacks.py 文件源码 项目:visual_turing_test-tutorial 作者: mateuszmalinowski 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, 
            patience=0, reduce_rate=0.5, reduce_nb=10, verbose=1):
        """
        In:
            patience - number of epochs in stagnation; by default 0
            reduce_rate - multiplicative rate reducer; by default 0.5
            reduce_nb - maximal number of reductions performed; by default 10
            verbose - verbosity level; by default 1
        """
        super(KerasCallback, self).__init__()
        self.patience = patience
        self.wait = 0
        self.best_score = -1.
        self.reduce_rate = reduce_rate
        self.current_reduce_nb = 0
        self.reduce_nb = reduce_nb
        self.is_early_stopping = False
        self.verbose = verbose
        self.epsilon = 0.1e-10
net.py 文件源码 项目:speechless 作者: JuliusKunze 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def create_callbacks(self, callback: Callable[[], None], tensor_board_log_directory: Path, net_directory: Path,
                         callback_step: int = 1, save_step: int = 1) -> List[Callback]:
        class CustomCallback(Callback):
            def on_epoch_end(self_callback, epoch, logs=()):
                if epoch % callback_step == 0:
                    callback()

                if epoch % save_step == 0 and epoch > 0:
                    mkdir(net_directory)

                    self.predictive_net.save_weights(str(net_directory / self.model_file_name(epoch)))

        tensorboard_if_running_tensorflow = [TensorBoard(
            log_dir=str(tensor_board_log_directory), write_images=True)] if backend.backend() == 'tensorflow' else []
        return tensorboard_if_running_tensorflow + [CustomCallback()]
roc_auc.py 文件源码 项目:deep-mil-for-whole-mammogram-classification 作者: wentaozhu 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def __init__(self, filepath, validation_data=(), interval=1, mymil=False):
    super(Callback, self).__init__()
    self.interval = interval
    self.auc = 0
    self.X_val, self.y_val = validation_data
    self.filepath = filepath
    self.mymil = mymil
roc_auc.py 文件源码 项目:deep-mil-for-whole-mammogram-classification 作者: wentaozhu 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, filepath, validation_data=(), interval=1, mymil=False):
    super(Callback, self).__init__()
    self.interval = interval
    self.prec = 0
    self.X_val, self.y_val = validation_data
    self.filepath = filepath
    self.mymil = mymil
roc_auc.py 文件源码 项目:deep-mil-for-whole-mammogram-classification 作者: wentaozhu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, filepath, validation_data=(), interval=1, mymil=False):
    super(Callback, self).__init__()
    self.interval = interval
    self.filepath = filepath
    self.reca = 0
    self.X_val, self.y_val = validation_data
    self.mymil = mymil
roc_auc.py 文件源码 项目:deep-mil-for-whole-mammogram-classification 作者: wentaozhu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, filepath, validation_data=(), interval=1, mymil=False):
    super(Callback, self).__init__()
    self.interval = interval
    self.filepath = filepath
    self.f1 = 0
    self.X_val, self.y_val = validation_data
    self.mymil = mymil
roc_auc.py 文件源码 项目:deep-mil-for-whole-mammogram-classification 作者: wentaozhu 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, filepath, validation_data=(), interval=1, mymil=False):
    super(Callback, self).__init__()
    self.interval = interval
    self.filepath = filepath
    self.acc = 0
    self.X_val, self.y_val = validation_data
    self.mymil = mymil
advanced.py 文件源码 项目:keras-tf-Super-Resolution 作者: olgaliak 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, filename):
        super(Callback, self).__init__()
        self.filename = filename
rnn.py 文件源码 项目:rupo 作者: IlyaGusev 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def train(self, dir_name: str, enable_checkpoints: bool = False, checkpoint: str = None) -> None:
        """
        ???????? ??????.

        :param dir_name: ????? ? ???????? ??????.
        :param enable_checkpoints: ???????????? ?? ?????????.
        :param checkpoint: ???????? ?????????.
        """
        # ?????????? ??????
        x, y = self.load_dict()
        x, y = self.prepare_data(x, y)
        # ??????? ?? ???????.
        x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=42)
        x_test, x_val, y_test, y_val = train_test_split(x_val, y_val, test_size=0.5, random_state=42)
        # ???????? ?????? ????????.
        callbacks = [EarlyStopping(monitor='val_acc', patience=2)]  # type: List[Callback]
        if enable_checkpoints:
            checkpoint_name = os.path.join(dir_name, "{epoch:02d}-{val_loss:.2f}.hdf5")
            callbacks.append(ModelCheckpoint(checkpoint_name, monitor='val_loss'))
        if checkpoint is not None:
            self.load(checkpoint)
        self.model.fit(x_train, y_train, verbose=1, epochs=60, batch_size=self.batch_size,
                       validation_data=(x_val, y_val), callbacks=callbacks)
        # ??????? ???????? ? word error rate ?? test ???????.
        accuracy = self.model.evaluate(x_test, y_test)[1]
        wer = self.evaluate_wer(x_test, y_test)[0]
        # ???? ????? ???????? ?? ???? ????????.
        self.model.fit(x, y, verbose=1, epochs=1, batch_size=self.batch_size)
        # ?????????? ??????.
        filename = "g2p_{language}_maxlen{maxlen}_B{rnn}{units1}_B{rnn}{units2}_dropout{dropout}_acc{acc}_wer{wer}.h5"
        filename = filename.format(language=self.language, rnn=self.rnn.__name__,
                                   units1=self.units1, units2=self.units2, dropout=self.dropout,
                                   acc=int(accuracy * 1000), wer=int(wer * 1000), maxlen=self.word_max_length)
        self.model.save(os.path.join(dir_name, filename))
grapheme_rnn.py 文件源码 项目:rupo 作者: IlyaGusev 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def train(self, dir_name: str, enable_checkpoints: bool = False) -> None:
        """
        ???????? ????.

        :param dir_name: ?????, ? ??????? ???????????? ??? ?????? ??????.
        :param enable_checkpoints: ???????????? ?? ?????????.
        """
        # ?????????? ??????
        x, y = self.__load_dict()
        x, y = self.__prepare_data(x, y)
        # ??????? ?? ???????.
        x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=42)
        x_test, x_val, y_test, y_val = train_test_split(x_val, y_val, test_size=0.5, random_state=42)
        # ???????? ?????? ????????.
        callbacks = [EarlyStopping(monitor='val_acc', patience=3)]  # type: List[Callback]
        if enable_checkpoints:
            checkpoint_name = os.path.join(dir_name, "checkpoint.hdf5")
            callbacks.append(ModelCheckpoint(checkpoint_name, monitor='val_loss'))
        self.model.fit(x_train, y_train, verbose=1, epochs=200, validation_data=(x_val, y_val),
                       callbacks=callbacks, batch_size=self.batch_size)
        # ??????? ???????? ?? test ???????.
        accuracy = self.model.evaluate(x_test, y_test)[1]
        # ?????? WER ?? test ???????.
        wer = self.__evaluate_wer(x_test, y_test)[0]
        # ???? ????? ???????? ?? ???? ????????.
        self.model.fit(x, y, verbose=1, epochs=1, batch_size=self.batch_size)
        # ?????????? ??????.
        filename = "stress_{language}_{rnn}{units}_dropout{dropout}_acc{acc}_wer{wer}.h5"
        filename = filename.format(language=self.language, rnn=self.rnn.__name__,
                                   units=self.units, dropout=self.dropout, acc=int(accuracy * 100),
                                   wer=int(wer * 100))
        self.model.save(os.path.join(dir_name, filename))
phoneme_rnn.py 文件源码 项目:rupo 作者: IlyaGusev 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def train(self, dir_name: str, enable_checkpoints: bool = False) -> None:
        """
        ???????? ????.

        :param dir_name: ?????, ? ??????? ???????????? ??? ?????? ??????.
        :param enable_checkpoints: ???????????? ?? ?????????.
        """
        # ?????????? ??????
        x, y = self.__load_dict()
        x, y = self.__prepare_data(x, y)
        # ??????? ?? ???????.
        x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.1, random_state=42)
        # ???????? ?????? ????????.
        callbacks = [EarlyStopping(monitor='val_acc', patience=3)]  # type: List[Callback]
        if enable_checkpoints:
            checkpoint_name = os.path.join(dir_name, "{epoch:02d}-{val_loss:.2f}.hdf5")
            callbacks.append(ModelCheckpoint(checkpoint_name, monitor='val_loss'))
        self.model.fit(x_train, y_train, verbose=1, epochs=200, validation_data=(x_val, y_val),
                       callbacks=callbacks, batch_size=self.batch_size)
        # ??????? ???????? ?? val ???????.
        accuracy = self.model.evaluate(x_val, y_val)[1]
        # ?????? WER ?? ???? ???????.
        wer = self.__evaluate_wer(x, y)[0]
        # ???? ????? ???????? ?? ???? ????????.
        self.model.fit(x, y, verbose=1, epochs=1, batch_size=self.batch_size)
        # ?????????? ??????.
        filename = "stress_{language}_{rnn}{units}_dropout{dropout}_acc{acc}_wer{wer}.h5"
        filename = filename.format(language=self.language, rnn=self.rnn.__name__,
                                   units=self.units, dropout=self.dropout, acc=int(accuracy * 100),
                                   wer=int(wer * 100))
        self.model.save(os.path.join(dir_name, filename))
network.py 文件源码 项目:tsnet 作者: coxlab 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def fit(self, dataset, settings):

        X_trn, y_trn, X_val, y_val, X_tst, y_tst = dataset

        y_trn = np_utils.to_categorical(y_trn, 10 if settings.dataset != 'cifar100' else 100)
        y_val = np_utils.to_categorical(y_val, 10 if settings.dataset != 'cifar100' else 100)
        y_tst = np_utils.to_categorical(y_tst, 10 if settings.dataset != 'cifar100' else 100) if len(y_tst) > 0 else []

        settings.lrnparam = (settings.lrnparam[:1] + settings.lrnparam[2:])

        self.model.compile(loss='categorical_crossentropy', optimizer=eval(settings.lrnalg)(*settings.lrnparam), metrics=["accuracy"])

        class PerEpochTest(Callback):

            def on_epoch_begin(self, epoch, logs={}): self.tic = time.time()
            def on_epoch_end  (self, epoch, logs={}):

                self.model.history.history['time']  = [] if 'time' not in self.model.history.history else self.model.history.history['time']
                self.model.history.history['time'] += [time.time() - self.tic]

                self.model.history.history['tst_acc']  = [] if 'tst_acc' not in self.model.history.history else self.model.history.history['tst_acc']
                self.model.history.history['tst_acc'] += [self.model.evaluate(X_tst, y_tst, batch_size=settings.batchsize, verbose=0)[1]]

        aug = augment(settings.dataset) if settings.augment else None
        arg = {'nb_epoch':settings.epoch, 'validation_data':(X_val, y_val), 'callbacks':[PerEpochTest()] if len(y_tst) > 0 else [], 'verbose':settings.verbose}

        if aug is None: self.model.fit          (         X_trn, y_trn, batch_size=settings.batchsize,                                                               **arg)
        else          : self.model.fit_generator(aug.flow(X_trn, y_trn, batch_size=settings.batchsize), samples_per_epoch=len(X_trn), nb_worker=4, pickle_safe=True, **arg)

        return self.model.history.history
DEC.py 文件源码 项目:DEC-keras 作者: XifengGuo 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def pretrain(self, x, y=None, optimizer='adam', epochs=200, batch_size=256, save_dir='results/temp'):
        print('...Pretraining...')
        self.autoencoder.compile(optimizer=optimizer, loss='mse')

        csv_logger = callbacks.CSVLogger(save_dir + '/pretrain_log.csv')
        cb = [csv_logger]
        if y is not None:
            class PrintACC(callbacks.Callback):
                def __init__(self, x, y):
                    self.x = x
                    self.y = y
                    super(PrintACC, self).__init__()

                def on_epoch_end(self, epoch, logs=None):
                    if epoch % int(epochs/10) != 0:
                        return
                    feature_model = Model(self.model.input,
                                          self.model.get_layer(
                                              'encoder_%d' % (int(len(self.model.layers) / 2) - 1)).output)
                    features = feature_model.predict(self.x)
                    km = KMeans(n_clusters=len(np.unique(self.y)), n_init=20, n_jobs=4)
                    y_pred = km.fit_predict(features)
                    # print()
                    print(' '*8 + '|==>  acc: %.4f,  nmi: %.4f  <==|'
                          % (metrics.acc(self.y, y_pred), metrics.nmi(self.y, y_pred)))

            cb.append(PrintACC(x, y))

        # begin pretraining
        t0 = time()
        self.autoencoder.fit(x, x, batch_size=batch_size, epochs=epochs, callbacks=cb)
        print('Pretraining time: ', time() - t0)
        self.autoencoder.save_weights(save_dir + '/ae_weights.h5')
        print('Pretrained weights are saved to %s/ae_weights.h5' % save_dir)
        self.pretrained = True
learning.py 文件源码 项目:speech_ml 作者: coopie 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self):
        super(Callback, self).__init__()
        self.stopped = False
train.py 文件源码 项目:deconvfaces 作者: zo7 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, output_dir, num_identities, batch_size=32, use_yale=False,
                 use_jaffe=False):
        """
        Constructor for a GenerateIntermediate object.

        Args:
            output_dir (str): Directory to save intermediate results in.
            num_identities (int): Number of identities in the training set.
        Args: (optional)
            batch_size (int): Batch size to use when generating images.
        """
        super(Callback, self).__init__()

        self.output_dir = output_dir
        self.num_identities = num_identities
        self.batch_size = batch_size
        self.use_yale = use_yale
        self.use_jaffe = use_jaffe

        self.parameters = dict()

        # Sweep through identities
        self.parameters['identity'] = np.eye(num_identities)

        if use_yale:
            # Use pose 0, lighting at 0deg azimuth and elevation
            self.parameters['pose'] = np.zeros((num_identities, NUM_YALE_POSES))
            self.parameters['lighting'] = np.zeros((num_identities, 4))
            for i in range(0, num_identities):
                self.parameters['pose'][i,0] = 0
                self.parameters['lighting'][i,1] = 1
                self.parameters['lighting'][i,3] = 1
        else:
            # Make all have neutral expressions, front-facing
            self.parameters['emotion'] = np.empty((num_identities, Emotion.length()))
            self.parameters['orientation'] = np.zeros((num_identities, 2))
            for i in range(0, num_identities):
                self.parameters['emotion'][i,:] = Emotion.neutral
                self.parameters['orientation'][i,1] = 1
retina_net.py 文件源码 项目:qtim_ROP 作者: QTIM-Lab 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def extract_features(self, img_data):

        features = self.cnn.evaluate(img_data)
        return features

# class ROCCallback(Callback):
# 
#     def __init__(self, training_data, validation_data):
#         super(Roc).__init__
#         self.x = training_data[0]
#         self.y = training_data[1]
#         self.x_val = validation_data[0]
#         self.y_val = validation_data[1]
# 
#     def on_train_begin(self, logs={}):
#         return
# 
#     def on_train_end(self, logs={}):
#         return
# 
#     def on_epoch_begin(self, epoch, logs={}):
#         return
# 
#     def on_epoch_end(self, epoch, logs={}):
#         y_pred = self.model.predict(self.x)
#         roc = roc_auc_score(self.y, y_pred)
# 
#         y_pred_val = self.model.predict(self.x_val)
#         roc_val = roc_auc_score(self.y_val, y_pred_val)
# 
#         print(
#         '\rroc-auc: %s - roc-auc_val: %s' % (str(round(roc, 4)), str(round(roc_val, 4))), end=100 * ' ' + '\n')
#         return
# 
#     def on_batch_begin(self, batch, logs={}):
#         return
# 
#     def on_batch_end(self, batch, logs={}):
#         return
callbacks.py 文件源码 项目:neural_style 作者: metaflow-ai 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, model, chkp_dir, nb_step_chkp=100, max_to_keep=10, keep_checkpoint_every_n_hours=1):
        super(Callback, self).__init__()
        if K._BACKEND == 'tensorflow':
            import tensorflow as tf
            self.saver = tf.train.Saver(var_list=None, max_to_keep=max_to_keep, keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
        else:
            self.saver = None

        self.model = model
        self.archi = model.to_json()
        self.chkp_dir = chkp_dir
        if not os.path.isdir(self.chkp_dir): 
            os.makedirs(self.chkp_dir)
        self.global_step = 0
        self.nb_step_chkp = nb_step_chkp
callbacks.py 文件源码 项目:mcv-m5 作者: david-vazquez 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, n_classes, savepath, train_metrics, valid_metrics,
                 best_metric, best_type, verbose=False, *args):
        super(Callback, self).__init__()
        # Save input parameters
        self.n_classes = n_classes
        self.savepath = savepath
        self.verbose = verbose
        self.train_metrics = train_metrics
        self.valid_metrics = valid_metrics
        self.best_metric = best_metric
        self.best_type = best_type
callbacks.py 文件源码 项目:mcv-m5 作者: david-vazquez 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, n_classes, *args):
        super(Callback, self).__init__()
        # Save input parameters
        self.n_classes = n_classes
        self.I = np.zeros(self.n_classes)
        self.U = np.zeros(self.n_classes)
        self.jacc_percl = np.zeros(self.n_classes)
        self.val_I = np.zeros(self.n_classes)
        self.val_U = np.zeros(self.n_classes)
        self.val_jacc_percl = np.zeros(self.n_classes)

        self.remove_metrics = []
        for i in range(n_classes):
            self.remove_metrics.append('I' + str(i))
            self.remove_metrics.append('U' + str(i))
            self.remove_metrics.append('val_I' + str(i))
            self.remove_metrics.append('val_U' + str(i))

        self.add_metrics = []
        self.add_metrics.append('jaccard')
        self.add_metrics.append('val_jaccard')
        for i in range(n_classes):
            self.add_metrics.append(str(i) + '_jacc')
            self.add_metrics.append(str(i) + '_val_jacc')
        setattr(ProgbarLogger, 'add_metrics', self.add_metrics)
        setattr(ProgbarLogger, 'remove_metrics', self.remove_metrics)
        setattr(ProgbarLogger, '_set_params', progbar__set_params)
        setattr(ProgbarLogger, 'on_batch_end', progbar_on_batch_end)
        setattr(ProgbarLogger, 'on_epoch_end', progbar_on_epoch_end)
callbacks.py 文件源码 项目:mcv-m5 作者: david-vazquez 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, n_classes, void_label, save_path,
                 generator, epoch_length, color_map, classes, tag,
                 n_legend_rows=1, *args):
        super(Callback, self).__init__()
        self.n_classes = n_classes
        self.void_label = void_label
        self.save_path = save_path
        self.generator = generator
        self.epoch_length = epoch_length
        self.color_map = color_map
        self.classes = classes
        self.n_legend_rows = n_legend_rows
        self.tag = tag
base.py 文件源码 项目:stacking 作者: ikki407 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, validation_data=(), interval=10):
        super(Callback, self).__init__()

        self.interval = interval
        self.X_val, self.y_val = validation_data
callbacks.py 文件源码 项目:Sacred_Deep_Learning 作者: AAbercrombie0492 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, X_val, y_val):
        import numpy as np
        # initiative Callback from parent class
        super(Callback, self).__init__()
        self.X_val, self.y_val = np.array(X_val), np.argmax(y_val)
callbacks.py 文件源码 项目:Sacred_Deep_Learning 作者: AAbercrombie0492 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, X_val, y_val):
        import numpy as np
        # initiative Callback from parent class
        super(Callback, self).__init__()
        self.X_val, self.y_val = np.array(X_val), np.array(y_val)
callbacks.py 文件源码 项目:Sacred_Deep_Learning 作者: AAbercrombie0492 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, X_val, y_val):
        import numpy as np
        # initiative Callback from parent class
        super(Callback, self).__init__()
        self.X_val, self.y_val = np.array(X_val), np.array(y_val)
callbacks.py 文件源码 项目:Sacred_Deep_Learning 作者: AAbercrombie0492 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, X_val, y_val):
        import numpy as np
        # initiative Callback from parent class
        super(Callback, self).__init__()
        self.X_val, self.y_val = np.array(X_val), np.array(y_val)
callbacks.py 文件源码 项目:Sacred_Deep_Learning 作者: AAbercrombie0492 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def __init__(self, X_val, y_val):
        import numpy as np
        # initiative Callback from parent class
        super(Callback, self).__init__()
        self.X_val, self.y_val = np.array(X_val), np.argmax(y_val, axis=1)


问题


面经


文章

微信
公众号

扫码关注公众号