python类EarlyStopping()的实例源码

l1_3_keras_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
l1_4_keras_4.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 40 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
l1_1_keras_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
predict_2017_07_06_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
predict_2017_07_04_4.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
predict_2017_07_06_2.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
predict_2017_07_05_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
predict_2017_07_06_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
predict_2017_07_06_4.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
predict_2017_07_03_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=1
                   )
           ]
predict_2017_07_05_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
predict_2017_07_06_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
predict_2017_07_05_4.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
predict_2017_07_05_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
predict_2017_07_04_5.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
kkeras.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def fit(self, X_train, y_train, X_val, y_val, nb_classes=None, batch_size=10, nb_epoch=20, verbose=0):
        model = self.model

        if nb_classes is None:
            nb_classes = max(set(y_train)) + 1

        Y_train = np_utils.to_categorical(y_train, nb_classes)
        Y_val = np_utils.to_categorical(y_val, nb_classes)

        model.reset_states()
        earlyStopping = callbacks.EarlyStopping(
            monitor='val_loss', patience=3, verbose=verbose, mode='auto')

        X_train, X_val = self.X_reshape(X_train, X_val)
        history = model.fit(X_train, Y_train,
                            batch_size=batch_size, nb_epoch=nb_epoch,
                            verbose=verbose, validation_data=(X_val, Y_val), callbacks=[earlyStopping])

        self.nb_classes = nb_classes
        self.history = history
kkeras.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def fit(self, X_train, Y_train, X_val, Y_val, batch_size=10, nb_epoch=20, verbose=0):
        model = self.model

        # if nb_classes is None:
        #   nb_classes = max( set( y_train)) + 1

        #Y_train = np_utils.to_categorical(y_train, nb_classes)
        #Y_val = np_utils.to_categorical(y_val, nb_classes)

        model.reset_states()
        earlyStopping = callbacks.EarlyStopping(
            monitor='val_loss', patience=3, verbose=verbose, mode='auto')

        X_train, X_val = self.X_reshape(X_train, X_val)
        history = model.fit(X_train, Y_train,
                            batch_size=batch_size, nb_epoch=nb_epoch,
                            verbose=verbose, validation_data=(X_val, Y_val), callbacks=[earlyStopping])

        #self.nb_classes = nb_classes
        self.history = history
kkeras.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 32 收藏 0 点赞 0 评论 0
def fit(self, X_train, y_train, X_val, y_val, nb_classes=None, batch_size=10, nb_epoch=20, verbose=0):
        model = self.model

        if nb_classes is None:
            nb_classes = max(set(y_train)) + 1

        Y_train = np_utils.to_categorical(y_train, nb_classes)
        Y_val = np_utils.to_categorical(y_val, nb_classes)

        model.reset_states()
        earlyStopping = callbacks.EarlyStopping(
            monitor='val_loss', patience=3, verbose=verbose, mode='auto')

        X_train, X_val = self.X_reshape(X_train, X_val)
        history = model.fit(X_train, Y_train,
                            batch_size=batch_size, nb_epoch=nb_epoch,
                            verbose=verbose, validation_data=(X_val, Y_val), callbacks=[earlyStopping])

        self.nb_classes = nb_classes
        self.history = history
kkeras.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def fit(self, X_train, Y_train, X_val, Y_val, batch_size=10, nb_epoch=20, verbose=0):
        model = self.model

        # if nb_classes is None:
        #   nb_classes = max( set( y_train)) + 1

        #Y_train = np_utils.to_categorical(y_train, nb_classes)
        #Y_val = np_utils.to_categorical(y_val, nb_classes)

        model.reset_states()
        earlyStopping = callbacks.EarlyStopping(
            monitor='val_loss', patience=3, verbose=verbose, mode='auto')

        X_train, X_val = self.X_reshape(X_train, X_val)
        history = model.fit(X_train, Y_train,
                            batch_size=batch_size, nb_epoch=nb_epoch,
                            verbose=verbose, validation_data=(X_val, Y_val), callbacks=[earlyStopping])

        #self.nb_classes = nb_classes
        self.history = history
_kkeras_r1.py 文件源码 项目:jamespy_py3 作者: jskDr 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def fit( self, X_train, Y_train, X_val, Y_val, batch_size=10, nb_epoch=20, verbose = 0):
        model = self.model

        #if nb_classes is None:
        #   nb_classes = max( set( y_train)) + 1

        #Y_train = np_utils.to_categorical(y_train, nb_classes)
        #Y_val = np_utils.to_categorical(y_val, nb_classes)

        model.reset_states()
        earlyStopping=callbacks.EarlyStopping(monitor='val_loss', patience=3, verbose=verbose, mode='auto')

        X_train, X_val = self.X_reshape( X_train, X_val)
        history = model.fit(X_train, Y_train,
                            batch_size=batch_size, nb_epoch=nb_epoch,
                            verbose=verbose, validation_data=(X_val, Y_val), callbacks=[earlyStopping])

        #self.nb_classes = nb_classes
        self.history = history


问题


面经


文章

微信
公众号

扫码关注公众号