python类EarlyStopping()的实例源码

tfRNN.py 文件源码 项目:SNLI-Keras 作者: adamzjk 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def start_train(self):
    """ Starts to Train the entire Model Based on set Parameters """
    # 1, Prep
    callback = [EarlyStopping(patience=self.Patience),
                ReduceLROnPlateau(patience=5, verbose=1),
                CSVLogger(filename=self.rnn_type+'log.csv'),
                ModelCheckpoint(self.rnn_type + '_' + self.dataset + '.check',
                                save_best_only=True,
                                save_weights_only=True)]

    # 2, Train
    self.model.fit(x = [self.train[0],self.train[1]],
                   y = self.train[2],
                   batch_size = self.BatchSize,
                   epochs = self.MaxEpoch,
                   validation_data=([self.test[0], self.test[1]], self.test[2]),
                   callbacks = callback)

    # 3, Evaluate
    self.model.load_weights(self.rnn_type + '_' + self.dataset + '.check') # revert to the best model
    self.evaluate_on_test()
DNGR.py 文件源码 项目:DNGR-Keras 作者: MdAsifKhan 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def model(data, hidden_layers, hidden_neurons, output_file, validation_split=0.9):


    train_n = int(validation_split * len(data))
    batch_size = 50
    train_data = data[:train_n,:]
    val_data = data[train_n:,:]

    input_sh = Input(shape=(data.shape[1],))
    encoded = noise.GaussianNoise(0.2)(input_sh)
    for i in range(hidden_layers):
        encoded = Dense(hidden_neurons[i], activation='relu')(encoded)
        encoded = noise.GaussianNoise(0.2)(encoded)

    decoded = Dense(hidden_neurons[-2], activation='relu')(encoded)
    for j in range(hidden_layers-3,-1,-1):
        decoded = Dense(hidden_neurons[j], activation='relu')(decoded)
    decoded = Dense(data.shape[1], activation='sigmoid')(decoded)

    autoencoder = Model(input=input_sh, output=decoded)
    autoencoder.compile(optimizer='adadelta', loss='mse')

    checkpointer = ModelCheckpoint(filepath='data/bestmodel' + output_file + ".hdf5", verbose=1, save_best_only=True)
    earlystopper = EarlyStopping(monitor='val_loss', patience=15, verbose=1)

    train_generator = DataGenerator(batch_size)
    train_generator.fit(train_data, train_data)
    val_generator = DataGenerator(batch_size)
    val_generator.fit(val_data, val_data)

    autoencoder.fit_generator(train_generator,
        samples_per_epoch=len(train_data),
        nb_epoch=100,
        validation_data=val_generator,
        nb_val_samples=len(val_data),
        max_q_size=batch_size,
        callbacks=[checkpointer, earlystopper])
    enco = Model(input=input_sh, output=encoded)
    enco.compile(optimizer='adadelta', loss='mse')
    reprsn = enco.predict(data)
    return reprsn
train_bts.py 文件源码 项目:Msc_Multi_label_ZeroShot 作者: thomasSve 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def train_multilabel_bts(lang_db, imdb, pretrained, max_iters = 1000, loss_func = 'squared_hinge', box_method = 'random'):
    # Create callback_list.
    dir_path = osp.join('output', 'bts_ckpt', imdb.name)
    tensor_path = osp.join(dir_path, 'log_dir')
    if not osp.exists(dir_path):
        os.makedirs(dir_path)
    if not osp.exists(tensor_path):
        os.makedirs(tensor_path)

    ckpt_save = osp.join(dir_path, lang_db.name + '_multi_label_fixed_' + 'weights-{epoch:02d}.hdf5')
    checkpoint = ModelCheckpoint(ckpt_save, monitor='loss', verbose=1, save_best_only=True)
    early_stop = EarlyStopping(monitor='loss', min_delta=0, patience=3, verbose=0, mode='auto')
    tensorboard = TensorBoard(log_dir=dir_path, histogram_freq=2000, write_graph=True, write_images=False)
    callback_list = [checkpoint, early_stop, tensorboard]
    pretrained.fit_generator(load_multilabel_data(imdb, lang_db, pretrained, box_method),
                             steps_per_epoch = 5000,
                             epochs = max_iters,
                             verbose = 1,
                             callbacks = callback_list,
                             workers = 1)

    pretrained.save(osp.join(dir_path, 'model_fixed' + imdb.name + '_' + lang_db.name + '_ML_' + box_method + '_' + loss_func + '.hdf5'))
validation.py 文件源码 项目:cnn_basics 作者: kootenpv 项目源码 文件源码 阅读 34 收藏 0 点赞 0 评论 0
def validate(model, X, y, nb_epoch=25, batch_size=128,
             stop_early=True, folds=10, test_size=None, shuffle=True, verbose=True):
    early_stopping = EarlyStopping(monitor='val_loss', patience=3, verbose=0, mode='auto')

    total_score = []
    if test_size is None:
        if folds == 1:
            test_size = 0.25
        else:
            test_size = 1 - (1. / folds)
    kf = ShuffleSplit(n_splits=folds, test_size=test_size)
    for fold, (train_index, test_index) in enumerate(kf.split(X, y)):
        shuffle_weights(model)
        if fold > 0:
            print("FOLD:", fold)
            print("-" * 40)
            model.reset_states()
            callbacks = [early_stopping] if True else None
        hist = model.fit(X[train_index], y[train_index], batch_size=batch_size, shuffle=shuffle,
                         validation_data=(X[test_index], y[test_index]),
                         callbacks=[early_stopping], verbose=verbose)
        total_score.append(hist.history["val_acc"][-1])
    return np.mean(total_score)
test_callbacks.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def test_EarlyStopping_reuse():
    patience = 3
    data = np.random.random((100, 1))
    labels = np.where(data > 0.5, 1, 0)
    model = Sequential((
        Dense(1, input_dim=1, activation='relu'),
        Dense(1, activation='sigmoid'),
    ))
    model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])
    stopper = callbacks.EarlyStopping(monitor='acc', patience=patience)
    weights = model.get_weights()

    hist = model.fit(data, labels, callbacks=[stopper])
    assert len(hist.epoch) >= patience

    # This should allow training to go for at least `patience` epochs
    model.set_weights(weights)
    hist = model.fit(data, labels, callbacks=[stopper])
    assert len(hist.epoch) >= patience
finetuning.py 文件源码 项目:DeepMoji 作者: bfelbo 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def finetuning_callbacks(checkpoint_path, patience, verbose):
    """ Callbacks for model training.

    # Arguments:
        checkpoint_path: Where weight checkpoints should be saved.
        patience: Number of epochs with no improvement after which
            training will be stopped.

    # Returns:
        Array with training callbacks that can be passed straight into
        model.fit() or similar.
    """
    cb_verbose = (verbose >= 2)
    checkpointer = ModelCheckpoint(monitor='val_loss', filepath=checkpoint_path,
                                   save_best_only=True, verbose=cb_verbose)
    earlystop = EarlyStopping(monitor='val_loss', patience=patience,
                              verbose=cb_verbose)
    return [checkpointer, earlystop]
process.py 文件源码 项目:mpi_learn 作者: duanders 项目源码 文件源码 阅读 37 收藏 0 点赞 0 评论 0
def init_callbacks(self, for_worker=False):
        """Prepares all keras callbacks to be used in training.
            Automatically attaches a History callback to the end of the callback list.
            If for_worker is True, leaves out callbacks that only make sense 
            with validation enabled."""
        import keras.callbacks as cbks
        remove_for_worker = [cbks.EarlyStopping, cbks.ModelCheckpoint]
        if for_worker:
            for obj in remove_for_worker:
                self.callbacks_list = [ c for c in self.callbacks_list 
                        if not isinstance(c, obj) ]
        self.model.history = cbks.History()
        self.callbacks = cbks.CallbackList( self.callbacks_list + [self.model.history] )

        # it's possible to callback a different model than self
        # (used by Sequential models)
        if hasattr(self.model, 'callback_model') and self.model.callback_model:
            self.callback_model = self.model.callback_model
        else:
            self.callback_model = self.model
        self.callbacks.set_model(self.callback_model)
        self.callback_model.stop_training = False
test_callbacks.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def test_EarlyStopping_reuse():
    patience = 3
    data = np.random.random((100, 1))
    labels = np.where(data > 0.5, 1, 0)
    model = Sequential((
        Dense(1, input_dim=1, activation='relu'),
        Dense(1, activation='sigmoid'),
    ))
    model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])
    stopper = callbacks.EarlyStopping(monitor='acc', patience=patience)
    weights = model.get_weights()

    hist = model.fit(data, labels, callbacks=[stopper])
    assert len(hist.epoch) >= patience

    # This should allow training to go for at least `patience` epochs
    model.set_weights(weights)
    hist = model.fit(data, labels, callbacks=[stopper])
    assert len(hist.epoch) >= patience
models.py 文件源码 项目:ContextMF 作者: lzheng21 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def train(self, X_train, V, seed):
        X_train = sequence.pad_sequences(X_train, maxlen=self.max_len)
        np.random.seed(seed)
        X_train = np.random.permutation(X_train)
        np.random.seed(seed)
        V = np.random.permutation(V)

        print("Train...CNN module")
        #history = self.model.fit({'input': X_train, 'output': V},
        #                         verbose=0, batch_size=self.batch_size, nb_epoch=self.nb_epoch, shuffle=True, validation_split=0.1, callbacks=[EarlyStopping(monitor='val_loss', patience=0)])
        history = self.model.fit(X_train,y=V,batch_size=self.batch_size,nb_epoch=self.nb_epoch, shuffle=True, validation_split=0.1, callbacks=[EarlyStopping(monitor='val_loss', patience=0)])

        cnn_loss_his = history.history['loss']
        cmp_cnn_loss = sorted(cnn_loss_his)[::-1]
        if cnn_loss_his != cmp_cnn_loss:
            self.nb_epoch = 1
        return history
chrom_hmm_cnn.py 文件源码 项目:dsde-deep-learning 作者: broadinstitute 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def train_chrom_labeller(model, train_tuple, valid_tuple, save_weight_hd5):
    checkpointer = ModelCheckpoint(filepath=save_weight_hd5, verbose=1, save_best_only=True)
    earlystopper = EarlyStopping(monitor='val_loss', patience=3, verbose=1) 

    history = model.fit(train_tuple[0], train_tuple[1], 
        batch_size=32, nb_epoch=150, shuffle=False, 
        validation_data=(valid_tuple[0], valid_tuple[1]), 
        callbacks=[checkpointer,earlystopper])

    plot_metric_history(history, weight_path_to_title(save_weight_hd5))

    return model


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~ Training Data ~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
nn_model.py 文件源码 项目:Vehicle-identification 作者: soloice 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def fit(self, X_trains, y_train):
        X_train1, X_train2, X_train3 = X_trains
        main_target, X1_vid = y_train
        early_stopping = EarlyStopping(monitor='val_loss', patience=2)
        print(X_train1.shape)
        print(X1_vid.shape)
        print(main_target.shape)
        self.model.fit({'X1': X_train1, 'X2': X_train2, 'X3': X_train3},
                       {'main_output': main_target, 'aux_output': X1_vid},
                       batch_size=self.batch_size, nb_epoch=self.nb_epoch, verbose=1,
                       validation_data=([X_train1, X_train2, X_train3], y_train), callbacks=[early_stopping])
        y_target = np.argmax(X1_vid, axis=1)
        y_predict = np.argmax(self.vision_model.predict(X_train1, verbose=0), axis=1)
        conf_mat = confusion_matrix(y_target, y_predict)
        print('Test accuracy:')
        n_correct = np.sum(np.diag(conf_mat))
        print('# correct:', n_correct, 'out of', len(y_target), ', acc=', float(n_correct) / len(y_target))
Stock_Prediction_Model_Stateless_LSTM.py 文件源码 项目:StockRecommendSystem 作者: doncat99 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def LSTM(self, argsDict):
        self.paras.batch_size             = argsDict["batch_size"]
        self.paras.model['dropout']       = argsDict['dropout']
        self.paras.model['activation']    = argsDict["activation"]
        self.paras.model['optimizer']     = argsDict["optimizer"]
        self.paras.model['learning_rate'] = argsDict["learning_rate"]

        print(self.paras.batch_size, self.paras.model['dropout'], self.paras.model['activation'], self.paras.model['optimizer'], self.paras.model['learning_rate'])

        model = self.lstm_model()
        model.fit(self.train_x, self.train_y,
              batch_size=self.paras.batch_size,
              epochs=self.paras.epoch,
              verbose=0,
              callbacks=[EarlyStopping(monitor='loss', patience=5)]
              )

        score, mse = model.evaluate(self.test_x, self.test_y, verbose=0)
        y_pred=model.predict(self.test_x)
        reca=Recall_s(self.test_y,y_pred)
        return -reca
text_sentiment_CNN.py 文件源码 项目:NN_sentiment 作者: hx364 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def fit(self, X_train, y_train, X_test, y_test,
            batch_size=50, nb_epoch=3):
        """

        :param X_train: each instance is a list of word index
        :param y_train:
        :return:
        """
        print(len(X_train), 'train sequences')
        print(len(X_test), 'test sequences')
        print("Pad sequences (samples x time)")
        X_train = sequence.pad_sequences(X_train, maxlen=self.maxlen)
        X_test = sequence.pad_sequences(X_test, maxlen=self.maxlen)
        print('X_train shape:', X_train.shape)
        print('X_test shape:', X_test.shape)
        y_train = expand_label(y_train)
        y_test = expand_label(y_test)

        #early stopping
        early_stop = EarlyStopping(monitor='val_loss', patience=2)

        self.model.fit({'input': X_train, 'output': y_train}, batch_size=batch_size, nb_epoch=nb_epoch,
          verbose=1, validation_data=({'input': X_test, 'output': y_test}), callbacks=[early_stop])
run_utils.py 文件源码 项目:deep-mlsa 作者: spinningbytes 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_callbacks(config_data, appendix=''):
    ret_callbacks = []
    model_stored = False
    callbacks = config_data['callbacks']
    if K._BACKEND == 'tensorflow':
        tensor_board = TensorBoard(log_dir=os.path.join('logging', config_data['tb_log_dir']), histogram_freq=10)
        ret_callbacks.append(tensor_board)
    for callback in callbacks:
        if callback['name'] == 'early_stopping':
            ret_callbacks.append(EarlyStopping(monitor=callback['monitor'], patience=callback['patience'], verbose=callback['verbose'], mode=callback['mode']))
        elif callback['name'] == 'model_checkpoit':
            model_stored = True
            path = config_data['output_path']
            basename = config_data['output_basename']
            base_path = os.path.join(path, basename)
            opath = os.path.join(base_path, 'best_model{}.h5'.format(appendix))
            save_best = bool(callback['save_best_only'])
            ret_callbacks.append(ModelCheckpoint(filepath=opath, verbose=callback['verbose'], save_best_only=save_best, monitor=callback['monitor'], mode=callback['mode']))
    return ret_callbacks, model_stored
main_CV.py 文件源码 项目:kaggle_bnp-paribas 作者: ArdalanM 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def fit(self, X, y, eval_set=None, class_weight=None, show_accuracy=True):


        if self.loss == 'categorical_crossentropy':
            y = np_utils.to_categorical(y)

        if eval_set != None and self.loss == 'categorical_crossentropy':
            eval_set = (eval_set[0], np_utils.to_categorical(eval_set[1]))

        self.model = self._build_model(self.input_dim,self.output_dim,self.hidden_units,self.activation,
                                       self.dropout, self.loss, self.optimizer, self.class_mode)

        if eval_set !=None:
            early_stopping = EarlyStopping(monitor='val_loss', patience=self.esr, verbose=1, mode='min')
            logs = self.model.fit(X, y, self.batch_size, self.nb_epoch, self.verbose, validation_data=eval_set, callbacks=[early_stopping], show_accuracy=True, shuffle=True)
        else:
            logs = self.model.fit(X, y, self.batch_size, self.nb_epoch, self.verbose, show_accuracy=True, shuffle=True)

        return logs
blend.py 文件源码 项目:kaggle_bnp-paribas 作者: ArdalanM 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def fit(self, X, y, eval_set=None, class_weight=None, show_accuracy=True):


        if self.loss == 'categorical_crossentropy':
            y = np_utils.to_categorical(y)

        if eval_set != None and self.loss == 'categorical_crossentropy':
            eval_set = (eval_set[0], np_utils.to_categorical(eval_set[1]))

        self.model = self._build_model(self.input_dim,self.output_dim,self.hidden_units,self.activation,
                                       self.dropout, self.loss, self.optimizer, self.class_mode)

        if eval_set !=None:
            early_stopping = EarlyStopping(monitor='val_loss', patience=self.esr, verbose=1, mode='min')
            logs = self.model.fit(X, y, self.batch_size, self.nb_epoch, self.verbose, validation_data=eval_set, callbacks=[early_stopping], show_accuracy=True, shuffle=True)
        else:
            logs = self.model.fit(X, y, self.batch_size, self.nb_epoch, self.verbose, show_accuracy=True, shuffle=True)

        return logs
train_neural.py 文件源码 项目:cervantes 作者: textclf 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def train_sequential(model, X, y, where_to_save, fit_params=None, monitor='val_acc'):
    # TODO: DOCUMENT once thoroughly tested
    # Watch out: where_to_save might be inside fit_params

    if fit_params is None:
        fit_params = {
            "batch_size": 32,
            "nb_epoch": 45,
            "verbose": True,
            "validation_split": 0.15,
            "show_accuracy": True,
            "callbacks": [EarlyStopping(verbose=True, patience=5, monitor=monitor),
                          ModelCheckpoint(where_to_save, monitor=monitor, verbose=True, save_best_only=True)]
        }
    print 'Fitting! Hit CTRL-C to stop early...'
    history = "Nothing to show"
    try:
        history = model.fit(X, y, **fit_params)
    except KeyboardInterrupt:
        print "Training stopped early!"
        history = model.history

    return history
test_callbacks.py 文件源码 项目:keras 作者: NVIDIA 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def test_EarlyStopping_reuse():
    patience = 3
    data = np.random.random((100, 1))
    labels = np.where(data > 0.5, 1, 0)
    model = Sequential((
        Dense(1, input_dim=1, activation='relu'),
        Dense(1, activation='sigmoid'),
    ))
    model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])
    stopper = callbacks.EarlyStopping(monitor='acc', patience=patience)
    weights = model.get_weights()

    hist = model.fit(data, labels, callbacks=[stopper])
    assert len(hist.epoch) >= patience

    # This should allow training to go for at least `patience` epochs
    model.set_weights(weights)
    hist = model.fit(data, labels, callbacks=[stopper])
    assert len(hist.epoch) >= patience
3DUNet_train_generator.py 文件源码 项目:Kaggle-DSB 作者: Wrosinski 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def unet_fit(name, start_t, end_t, start_v, end_v, check_name = None):

    t = time.time()
    callbacks = [EarlyStopping(monitor='val_loss', patience = 15, 
                                   verbose = 1),
    ModelCheckpoint('/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(name), 
                        monitor='val_loss', 
                        verbose = 0, save_best_only = True)]

    if check_name is not None:
        check_model = '/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(check_name)
        model = load_model(check_model, 
                           custom_objects={'dice_coef_loss': dice_coef_loss, 'dice_coef': dice_coef})
    else:
        model = unet_model()

    model.fit_generator(generate_train(start_t, end_t), nb_epoch = 150, verbose = 1, 
                        validation_data = generate_val(start_v, end_v), 
                        callbacks = callbacks,
                        samples_per_epoch = 551, nb_val_samples = 50)

    return


# In[5]:
preds2d_utils.py 文件源码 项目:Kaggle-DSB 作者: Wrosinski 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def cnn3d_genfit(name, nn_model, epochs, start_t, end_t, start_v, end_v, nb_train, nb_val, check_name = None):
    callbacks = [EarlyStopping(monitor='val_loss', patience = 15, 
                                   verbose = 1),
    ModelCheckpoint('/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(name), 
                        monitor='val_loss', 
                        verbose = 0, save_best_only = True)]
    if check_name is not None:
        check_model = '/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(check_name)
        model = load_model(check_model)
    else:
        model = nn_model
    model.fit_generator(generate_train(start_t, end_t), nb_epoch = epochs, verbose = 1, 
                        validation_data = generate_val(start_v, end_v), 
                        callbacks = callbacks,
                        samples_per_epoch = nb_train, nb_val_samples = nb_val)
    return
preds3d_utils.py 文件源码 项目:Kaggle-DSB 作者: Wrosinski 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def cnn3d_genfit(name, nn_model, epochs, start_t, end_t, start_v, end_v, nb_train, nb_val, check_name = None):
    callbacks = [EarlyStopping(monitor='val_loss', patience = 15, 
                                   verbose = 1),
    ModelCheckpoint('/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(name), 
                        monitor='val_loss', 
                        verbose = 0, save_best_only = True)]
    if check_name is not None:
        check_model = '/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(check_name)
        model = load_model(check_model)
    else:
        model = nn_model
    model.fit_generator(generate_train(start_t, end_t), nb_epoch = epochs, verbose = 1, 
                        validation_data = generate_val(start_v, end_v), 
                        callbacks = callbacks,
                        samples_per_epoch = nb_train, nb_val_samples = nb_val)
    return
2D_CNN_fullsizepreds.py 文件源码 项目:Kaggle-DSB 作者: Wrosinski 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def cnn_genfit(name, batch_size, cnn, samples_tr, samples_val, 
               start_tr, end_tr, start_val, end_val):

    callbacks = [EarlyStopping(monitor='val_loss', patience = 3, 
                                   verbose = 1),
    ModelCheckpoint('/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(name), 
                        monitor='val_loss', 
                        verbose = 0, save_best_only = True)]

    model = cnn()
    model.fit_generator(generate_train(start_tr, end_tr, batch_size), 
                        nb_epoch = 25, verbose = 1, callbacks = callbacks, 
                        samples_per_epoch = samples_tr,
                        validation_data = generate_val(start_val, end_val, batch_size),
                        nb_val_samples = samples_val)
    return


#samplestr = check_shapes(0, 1398)
#samplesval = check_shapes(1398, 1594)
BrainSegDCNN_2.py 文件源码 项目:nn-segmentation-for-lar 作者: cvdlab 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def fit_cnn1(self, X33_train, Y_train, X33_unif_train, Y_unif_train):
        # Create temp cnn with input shape=(4,33,33,)
        input33 = Input(shape=(4, 33, 33))
        output_cnn = self.one_block_model(input33)
        output_cnn = Reshape((5,))(output_cnn)
        # Cnn compiling
        temp_cnn = Model(inputs=input33, outputs=output_cnn)
        sgd = SGD(lr=self.learning_rate, momentum=self.momentum_rate, decay=self.decay_rate, nesterov=False)
        temp_cnn.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
        # Stop the training if the monitor function doesn't change after patience epochs
        earlystopping = EarlyStopping(monitor='val_loss', patience=2, verbose=1, mode='auto')
        # Save model after each epoch to check/bm_epoch#-val_loss
        checkpointer = ModelCheckpoint(filepath="/home/ixb3/Scrivania/check/bm_{epoch:02d}-{val_loss:.2f}.hdf5", verbose=1)
        # First-phase training with uniformly distribuited training set
        temp_cnn.fit(x=X33_train, y=Y_train, batch_size=self.batch_size, epochs=self.nb_epoch,
                     callbacks=[earlystopping, checkpointer], validation_split=0.3,  verbose=1)
        # fix all the layers of the temporary cnn except the output layer for the second-phase
        temp_cnn = self.freeze_model(temp_cnn, freeze_output=False)
        # Second-phase training of the output layer with training set with real distribution probabily
        temp_cnn.fit(x=X33_unif_train, y=Y_unif_train, batch_size=self.batch_size, epochs=self.nb_epoch,
                     callbacks=[earlystopping, checkpointer], validation_split=0.3, verbose=1)
        # set the weights of the first cnn to the trained weights of the temporary cnn
        self.cnn1.set_weights(temp_cnn.get_weights())
p1b2_ljeabmreosn_mlp.py 文件源码 项目:Benchmarks 作者: ECP-CANDLE 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def train_model(model):
    opt = 'rmsprop'
    model_checkpoint = ModelCheckpoint(
        filepath=BEST_MODEL_PATH, 
        monitor='val_acc', 
        verbose=0, 
        save_best_only=True,  
        mode='auto'
    )
    overfitting_stopper = EarlyStopping(
        monitor='val_acc', 
        min_delta=0, 
        patience=5, 
        verbose=1, 
        mode='auto'
    )
    model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
    model_history = model.fit(X_train, y_train,
        batch_size       = 64,
        nb_epoch         = 50,
        #shuffle          = True,
        validation_split = 0.2,
        #verbose          = 2
        callbacks        = [overfitting_stopper, model_checkpoint]
    )
bigrumodel.py 文件源码 项目:CIKM_AnalytiCup_2017 作者: zxth93 项目源码 文件源码 阅读 33 收藏 0 点赞 0 评论 0
def BiGRU(X_train, y_train, X_test, y_test, gru_units, dense_units, input_shape, \
           batch_size, epochs, drop_out, patience):

    model = Sequential()

    reg = L1L2(l1=0.2, l2=0.2)

    model.add(Bidirectional(GRU(units = gru_units, dropout= drop_out, activation='relu', recurrent_regularizer = reg,
                                return_sequences = True),
                                input_shape = input_shape,
                                merge_mode="concat"))

    model.add(BatchNormalization())

    model.add(TimeDistributed(Dense(dense_units, activation='relu')))
    model.add(BatchNormalization())

    model.add(Bidirectional(GRU(units = gru_units, dropout= drop_out, activation='relu', recurrent_regularizer=reg,
                                    return_sequences = True),
                             merge_mode="concat"))

    model.add(BatchNormalization())

    model.add(Dense(units=1))

    model.add(GlobalAveragePooling1D())

    print(model.summary())

    early_stopping = EarlyStopping(monitor="val_loss", patience = patience)

    model.compile(loss='mse', optimizer= 'adam')

    history_callback = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs,\
              verbose=2, callbacks=[early_stopping], validation_data=[X_test, y_test], shuffle = True)

    return model, history_callback
model_base_keras.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
l1_4_keras_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
l1_1_keras_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
l1_4_keras_3.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]
l1_3_keras_1.py 文件源码 项目:mlbootcamp_5 作者: ivan-filonov 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def build_keras_fit_callbacks(model_path):
    from keras import callbacks
    return [
           callbacks.EarlyStopping(
                  monitor='val_loss',
                  patience=20
                  #verbose=1
                   ),
           callbacks.ModelCheckpoint(
                  model_path,
                  monitor='val_loss',
                  save_best_only=True,
                  save_weights_only=True,
                  verbose=0
                   ),
           callbacks.ReduceLROnPlateau(
                  monitor='val_loss',
                  min_lr=1e-7,
                  factor=0.2,
                  verbose=0
                   )
           ]


问题


面经


文章

微信
公众号

扫码关注公众号