def start_train(self):
""" Starts to Train the entire Model Based on set Parameters """
# 1, Prep
callback = [EarlyStopping(patience=self.Patience),
ReduceLROnPlateau(patience=5, verbose=1),
CSVLogger(filename=self.rnn_type+'log.csv'),
ModelCheckpoint(self.rnn_type + '_' + self.dataset + '.check',
save_best_only=True,
save_weights_only=True)]
# 2, Train
self.model.fit(x = [self.train[0],self.train[1]],
y = self.train[2],
batch_size = self.BatchSize,
epochs = self.MaxEpoch,
validation_data=([self.test[0], self.test[1]], self.test[2]),
callbacks = callback)
# 3, Evaluate
self.model.load_weights(self.rnn_type + '_' + self.dataset + '.check') # revert to the best model
self.evaluate_on_test()
python类EarlyStopping()的实例源码
def model(data, hidden_layers, hidden_neurons, output_file, validation_split=0.9):
train_n = int(validation_split * len(data))
batch_size = 50
train_data = data[:train_n,:]
val_data = data[train_n:,:]
input_sh = Input(shape=(data.shape[1],))
encoded = noise.GaussianNoise(0.2)(input_sh)
for i in range(hidden_layers):
encoded = Dense(hidden_neurons[i], activation='relu')(encoded)
encoded = noise.GaussianNoise(0.2)(encoded)
decoded = Dense(hidden_neurons[-2], activation='relu')(encoded)
for j in range(hidden_layers-3,-1,-1):
decoded = Dense(hidden_neurons[j], activation='relu')(decoded)
decoded = Dense(data.shape[1], activation='sigmoid')(decoded)
autoencoder = Model(input=input_sh, output=decoded)
autoencoder.compile(optimizer='adadelta', loss='mse')
checkpointer = ModelCheckpoint(filepath='data/bestmodel' + output_file + ".hdf5", verbose=1, save_best_only=True)
earlystopper = EarlyStopping(monitor='val_loss', patience=15, verbose=1)
train_generator = DataGenerator(batch_size)
train_generator.fit(train_data, train_data)
val_generator = DataGenerator(batch_size)
val_generator.fit(val_data, val_data)
autoencoder.fit_generator(train_generator,
samples_per_epoch=len(train_data),
nb_epoch=100,
validation_data=val_generator,
nb_val_samples=len(val_data),
max_q_size=batch_size,
callbacks=[checkpointer, earlystopper])
enco = Model(input=input_sh, output=encoded)
enco.compile(optimizer='adadelta', loss='mse')
reprsn = enco.predict(data)
return reprsn
def train_multilabel_bts(lang_db, imdb, pretrained, max_iters = 1000, loss_func = 'squared_hinge', box_method = 'random'):
# Create callback_list.
dir_path = osp.join('output', 'bts_ckpt', imdb.name)
tensor_path = osp.join(dir_path, 'log_dir')
if not osp.exists(dir_path):
os.makedirs(dir_path)
if not osp.exists(tensor_path):
os.makedirs(tensor_path)
ckpt_save = osp.join(dir_path, lang_db.name + '_multi_label_fixed_' + 'weights-{epoch:02d}.hdf5')
checkpoint = ModelCheckpoint(ckpt_save, monitor='loss', verbose=1, save_best_only=True)
early_stop = EarlyStopping(monitor='loss', min_delta=0, patience=3, verbose=0, mode='auto')
tensorboard = TensorBoard(log_dir=dir_path, histogram_freq=2000, write_graph=True, write_images=False)
callback_list = [checkpoint, early_stop, tensorboard]
pretrained.fit_generator(load_multilabel_data(imdb, lang_db, pretrained, box_method),
steps_per_epoch = 5000,
epochs = max_iters,
verbose = 1,
callbacks = callback_list,
workers = 1)
pretrained.save(osp.join(dir_path, 'model_fixed' + imdb.name + '_' + lang_db.name + '_ML_' + box_method + '_' + loss_func + '.hdf5'))
def validate(model, X, y, nb_epoch=25, batch_size=128,
stop_early=True, folds=10, test_size=None, shuffle=True, verbose=True):
early_stopping = EarlyStopping(monitor='val_loss', patience=3, verbose=0, mode='auto')
total_score = []
if test_size is None:
if folds == 1:
test_size = 0.25
else:
test_size = 1 - (1. / folds)
kf = ShuffleSplit(n_splits=folds, test_size=test_size)
for fold, (train_index, test_index) in enumerate(kf.split(X, y)):
shuffle_weights(model)
if fold > 0:
print("FOLD:", fold)
print("-" * 40)
model.reset_states()
callbacks = [early_stopping] if True else None
hist = model.fit(X[train_index], y[train_index], batch_size=batch_size, shuffle=shuffle,
validation_data=(X[test_index], y[test_index]),
callbacks=[early_stopping], verbose=verbose)
total_score.append(hist.history["val_acc"][-1])
return np.mean(total_score)
def test_EarlyStopping_reuse():
patience = 3
data = np.random.random((100, 1))
labels = np.where(data > 0.5, 1, 0)
model = Sequential((
Dense(1, input_dim=1, activation='relu'),
Dense(1, activation='sigmoid'),
))
model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])
stopper = callbacks.EarlyStopping(monitor='acc', patience=patience)
weights = model.get_weights()
hist = model.fit(data, labels, callbacks=[stopper])
assert len(hist.epoch) >= patience
# This should allow training to go for at least `patience` epochs
model.set_weights(weights)
hist = model.fit(data, labels, callbacks=[stopper])
assert len(hist.epoch) >= patience
def finetuning_callbacks(checkpoint_path, patience, verbose):
""" Callbacks for model training.
# Arguments:
checkpoint_path: Where weight checkpoints should be saved.
patience: Number of epochs with no improvement after which
training will be stopped.
# Returns:
Array with training callbacks that can be passed straight into
model.fit() or similar.
"""
cb_verbose = (verbose >= 2)
checkpointer = ModelCheckpoint(monitor='val_loss', filepath=checkpoint_path,
save_best_only=True, verbose=cb_verbose)
earlystop = EarlyStopping(monitor='val_loss', patience=patience,
verbose=cb_verbose)
return [checkpointer, earlystop]
def init_callbacks(self, for_worker=False):
"""Prepares all keras callbacks to be used in training.
Automatically attaches a History callback to the end of the callback list.
If for_worker is True, leaves out callbacks that only make sense
with validation enabled."""
import keras.callbacks as cbks
remove_for_worker = [cbks.EarlyStopping, cbks.ModelCheckpoint]
if for_worker:
for obj in remove_for_worker:
self.callbacks_list = [ c for c in self.callbacks_list
if not isinstance(c, obj) ]
self.model.history = cbks.History()
self.callbacks = cbks.CallbackList( self.callbacks_list + [self.model.history] )
# it's possible to callback a different model than self
# (used by Sequential models)
if hasattr(self.model, 'callback_model') and self.model.callback_model:
self.callback_model = self.model.callback_model
else:
self.callback_model = self.model
self.callbacks.set_model(self.callback_model)
self.callback_model.stop_training = False
def test_EarlyStopping_reuse():
patience = 3
data = np.random.random((100, 1))
labels = np.where(data > 0.5, 1, 0)
model = Sequential((
Dense(1, input_dim=1, activation='relu'),
Dense(1, activation='sigmoid'),
))
model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])
stopper = callbacks.EarlyStopping(monitor='acc', patience=patience)
weights = model.get_weights()
hist = model.fit(data, labels, callbacks=[stopper])
assert len(hist.epoch) >= patience
# This should allow training to go for at least `patience` epochs
model.set_weights(weights)
hist = model.fit(data, labels, callbacks=[stopper])
assert len(hist.epoch) >= patience
def train(self, X_train, V, seed):
X_train = sequence.pad_sequences(X_train, maxlen=self.max_len)
np.random.seed(seed)
X_train = np.random.permutation(X_train)
np.random.seed(seed)
V = np.random.permutation(V)
print("Train...CNN module")
#history = self.model.fit({'input': X_train, 'output': V},
# verbose=0, batch_size=self.batch_size, nb_epoch=self.nb_epoch, shuffle=True, validation_split=0.1, callbacks=[EarlyStopping(monitor='val_loss', patience=0)])
history = self.model.fit(X_train,y=V,batch_size=self.batch_size,nb_epoch=self.nb_epoch, shuffle=True, validation_split=0.1, callbacks=[EarlyStopping(monitor='val_loss', patience=0)])
cnn_loss_his = history.history['loss']
cmp_cnn_loss = sorted(cnn_loss_his)[::-1]
if cnn_loss_his != cmp_cnn_loss:
self.nb_epoch = 1
return history
def train_chrom_labeller(model, train_tuple, valid_tuple, save_weight_hd5):
checkpointer = ModelCheckpoint(filepath=save_weight_hd5, verbose=1, save_best_only=True)
earlystopper = EarlyStopping(monitor='val_loss', patience=3, verbose=1)
history = model.fit(train_tuple[0], train_tuple[1],
batch_size=32, nb_epoch=150, shuffle=False,
validation_data=(valid_tuple[0], valid_tuple[1]),
callbacks=[checkpointer,earlystopper])
plot_metric_history(history, weight_path_to_title(save_weight_hd5))
return model
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~ Training Data ~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def fit(self, X_trains, y_train):
X_train1, X_train2, X_train3 = X_trains
main_target, X1_vid = y_train
early_stopping = EarlyStopping(monitor='val_loss', patience=2)
print(X_train1.shape)
print(X1_vid.shape)
print(main_target.shape)
self.model.fit({'X1': X_train1, 'X2': X_train2, 'X3': X_train3},
{'main_output': main_target, 'aux_output': X1_vid},
batch_size=self.batch_size, nb_epoch=self.nb_epoch, verbose=1,
validation_data=([X_train1, X_train2, X_train3], y_train), callbacks=[early_stopping])
y_target = np.argmax(X1_vid, axis=1)
y_predict = np.argmax(self.vision_model.predict(X_train1, verbose=0), axis=1)
conf_mat = confusion_matrix(y_target, y_predict)
print('Test accuracy:')
n_correct = np.sum(np.diag(conf_mat))
print('# correct:', n_correct, 'out of', len(y_target), ', acc=', float(n_correct) / len(y_target))
Stock_Prediction_Model_Stateless_LSTM.py 文件源码
项目:StockRecommendSystem
作者: doncat99
项目源码
文件源码
阅读 24
收藏 0
点赞 0
评论 0
def LSTM(self, argsDict):
self.paras.batch_size = argsDict["batch_size"]
self.paras.model['dropout'] = argsDict['dropout']
self.paras.model['activation'] = argsDict["activation"]
self.paras.model['optimizer'] = argsDict["optimizer"]
self.paras.model['learning_rate'] = argsDict["learning_rate"]
print(self.paras.batch_size, self.paras.model['dropout'], self.paras.model['activation'], self.paras.model['optimizer'], self.paras.model['learning_rate'])
model = self.lstm_model()
model.fit(self.train_x, self.train_y,
batch_size=self.paras.batch_size,
epochs=self.paras.epoch,
verbose=0,
callbacks=[EarlyStopping(monitor='loss', patience=5)]
)
score, mse = model.evaluate(self.test_x, self.test_y, verbose=0)
y_pred=model.predict(self.test_x)
reca=Recall_s(self.test_y,y_pred)
return -reca
def fit(self, X_train, y_train, X_test, y_test,
batch_size=50, nb_epoch=3):
"""
:param X_train: each instance is a list of word index
:param y_train:
:return:
"""
print(len(X_train), 'train sequences')
print(len(X_test), 'test sequences')
print("Pad sequences (samples x time)")
X_train = sequence.pad_sequences(X_train, maxlen=self.maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=self.maxlen)
print('X_train shape:', X_train.shape)
print('X_test shape:', X_test.shape)
y_train = expand_label(y_train)
y_test = expand_label(y_test)
#early stopping
early_stop = EarlyStopping(monitor='val_loss', patience=2)
self.model.fit({'input': X_train, 'output': y_train}, batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1, validation_data=({'input': X_test, 'output': y_test}), callbacks=[early_stop])
def get_callbacks(config_data, appendix=''):
ret_callbacks = []
model_stored = False
callbacks = config_data['callbacks']
if K._BACKEND == 'tensorflow':
tensor_board = TensorBoard(log_dir=os.path.join('logging', config_data['tb_log_dir']), histogram_freq=10)
ret_callbacks.append(tensor_board)
for callback in callbacks:
if callback['name'] == 'early_stopping':
ret_callbacks.append(EarlyStopping(monitor=callback['monitor'], patience=callback['patience'], verbose=callback['verbose'], mode=callback['mode']))
elif callback['name'] == 'model_checkpoit':
model_stored = True
path = config_data['output_path']
basename = config_data['output_basename']
base_path = os.path.join(path, basename)
opath = os.path.join(base_path, 'best_model{}.h5'.format(appendix))
save_best = bool(callback['save_best_only'])
ret_callbacks.append(ModelCheckpoint(filepath=opath, verbose=callback['verbose'], save_best_only=save_best, monitor=callback['monitor'], mode=callback['mode']))
return ret_callbacks, model_stored
def fit(self, X, y, eval_set=None, class_weight=None, show_accuracy=True):
if self.loss == 'categorical_crossentropy':
y = np_utils.to_categorical(y)
if eval_set != None and self.loss == 'categorical_crossentropy':
eval_set = (eval_set[0], np_utils.to_categorical(eval_set[1]))
self.model = self._build_model(self.input_dim,self.output_dim,self.hidden_units,self.activation,
self.dropout, self.loss, self.optimizer, self.class_mode)
if eval_set !=None:
early_stopping = EarlyStopping(monitor='val_loss', patience=self.esr, verbose=1, mode='min')
logs = self.model.fit(X, y, self.batch_size, self.nb_epoch, self.verbose, validation_data=eval_set, callbacks=[early_stopping], show_accuracy=True, shuffle=True)
else:
logs = self.model.fit(X, y, self.batch_size, self.nb_epoch, self.verbose, show_accuracy=True, shuffle=True)
return logs
def fit(self, X, y, eval_set=None, class_weight=None, show_accuracy=True):
if self.loss == 'categorical_crossentropy':
y = np_utils.to_categorical(y)
if eval_set != None and self.loss == 'categorical_crossentropy':
eval_set = (eval_set[0], np_utils.to_categorical(eval_set[1]))
self.model = self._build_model(self.input_dim,self.output_dim,self.hidden_units,self.activation,
self.dropout, self.loss, self.optimizer, self.class_mode)
if eval_set !=None:
early_stopping = EarlyStopping(monitor='val_loss', patience=self.esr, verbose=1, mode='min')
logs = self.model.fit(X, y, self.batch_size, self.nb_epoch, self.verbose, validation_data=eval_set, callbacks=[early_stopping], show_accuracy=True, shuffle=True)
else:
logs = self.model.fit(X, y, self.batch_size, self.nb_epoch, self.verbose, show_accuracy=True, shuffle=True)
return logs
def train_sequential(model, X, y, where_to_save, fit_params=None, monitor='val_acc'):
# TODO: DOCUMENT once thoroughly tested
# Watch out: where_to_save might be inside fit_params
if fit_params is None:
fit_params = {
"batch_size": 32,
"nb_epoch": 45,
"verbose": True,
"validation_split": 0.15,
"show_accuracy": True,
"callbacks": [EarlyStopping(verbose=True, patience=5, monitor=monitor),
ModelCheckpoint(where_to_save, monitor=monitor, verbose=True, save_best_only=True)]
}
print 'Fitting! Hit CTRL-C to stop early...'
history = "Nothing to show"
try:
history = model.fit(X, y, **fit_params)
except KeyboardInterrupt:
print "Training stopped early!"
history = model.history
return history
def test_EarlyStopping_reuse():
patience = 3
data = np.random.random((100, 1))
labels = np.where(data > 0.5, 1, 0)
model = Sequential((
Dense(1, input_dim=1, activation='relu'),
Dense(1, activation='sigmoid'),
))
model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])
stopper = callbacks.EarlyStopping(monitor='acc', patience=patience)
weights = model.get_weights()
hist = model.fit(data, labels, callbacks=[stopper])
assert len(hist.epoch) >= patience
# This should allow training to go for at least `patience` epochs
model.set_weights(weights)
hist = model.fit(data, labels, callbacks=[stopper])
assert len(hist.epoch) >= patience
def unet_fit(name, start_t, end_t, start_v, end_v, check_name = None):
t = time.time()
callbacks = [EarlyStopping(monitor='val_loss', patience = 15,
verbose = 1),
ModelCheckpoint('/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(name),
monitor='val_loss',
verbose = 0, save_best_only = True)]
if check_name is not None:
check_model = '/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(check_name)
model = load_model(check_model,
custom_objects={'dice_coef_loss': dice_coef_loss, 'dice_coef': dice_coef})
else:
model = unet_model()
model.fit_generator(generate_train(start_t, end_t), nb_epoch = 150, verbose = 1,
validation_data = generate_val(start_v, end_v),
callbacks = callbacks,
samples_per_epoch = 551, nb_val_samples = 50)
return
# In[5]:
def cnn3d_genfit(name, nn_model, epochs, start_t, end_t, start_v, end_v, nb_train, nb_val, check_name = None):
callbacks = [EarlyStopping(monitor='val_loss', patience = 15,
verbose = 1),
ModelCheckpoint('/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(name),
monitor='val_loss',
verbose = 0, save_best_only = True)]
if check_name is not None:
check_model = '/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(check_name)
model = load_model(check_model)
else:
model = nn_model
model.fit_generator(generate_train(start_t, end_t), nb_epoch = epochs, verbose = 1,
validation_data = generate_val(start_v, end_v),
callbacks = callbacks,
samples_per_epoch = nb_train, nb_val_samples = nb_val)
return
def cnn3d_genfit(name, nn_model, epochs, start_t, end_t, start_v, end_v, nb_train, nb_val, check_name = None):
callbacks = [EarlyStopping(monitor='val_loss', patience = 15,
verbose = 1),
ModelCheckpoint('/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(name),
monitor='val_loss',
verbose = 0, save_best_only = True)]
if check_name is not None:
check_model = '/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(check_name)
model = load_model(check_model)
else:
model = nn_model
model.fit_generator(generate_train(start_t, end_t), nb_epoch = epochs, verbose = 1,
validation_data = generate_val(start_v, end_v),
callbacks = callbacks,
samples_per_epoch = nb_train, nb_val_samples = nb_val)
return
def cnn_genfit(name, batch_size, cnn, samples_tr, samples_val,
start_tr, end_tr, start_val, end_val):
callbacks = [EarlyStopping(monitor='val_loss', patience = 3,
verbose = 1),
ModelCheckpoint('/home/w/DS_Projects/Kaggle/DS Bowl 2017/Scripts/LUNA/CNN/Checkpoints/{}.h5'.format(name),
monitor='val_loss',
verbose = 0, save_best_only = True)]
model = cnn()
model.fit_generator(generate_train(start_tr, end_tr, batch_size),
nb_epoch = 25, verbose = 1, callbacks = callbacks,
samples_per_epoch = samples_tr,
validation_data = generate_val(start_val, end_val, batch_size),
nb_val_samples = samples_val)
return
#samplestr = check_shapes(0, 1398)
#samplesval = check_shapes(1398, 1594)
def fit_cnn1(self, X33_train, Y_train, X33_unif_train, Y_unif_train):
# Create temp cnn with input shape=(4,33,33,)
input33 = Input(shape=(4, 33, 33))
output_cnn = self.one_block_model(input33)
output_cnn = Reshape((5,))(output_cnn)
# Cnn compiling
temp_cnn = Model(inputs=input33, outputs=output_cnn)
sgd = SGD(lr=self.learning_rate, momentum=self.momentum_rate, decay=self.decay_rate, nesterov=False)
temp_cnn.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
# Stop the training if the monitor function doesn't change after patience epochs
earlystopping = EarlyStopping(monitor='val_loss', patience=2, verbose=1, mode='auto')
# Save model after each epoch to check/bm_epoch#-val_loss
checkpointer = ModelCheckpoint(filepath="/home/ixb3/Scrivania/check/bm_{epoch:02d}-{val_loss:.2f}.hdf5", verbose=1)
# First-phase training with uniformly distribuited training set
temp_cnn.fit(x=X33_train, y=Y_train, batch_size=self.batch_size, epochs=self.nb_epoch,
callbacks=[earlystopping, checkpointer], validation_split=0.3, verbose=1)
# fix all the layers of the temporary cnn except the output layer for the second-phase
temp_cnn = self.freeze_model(temp_cnn, freeze_output=False)
# Second-phase training of the output layer with training set with real distribution probabily
temp_cnn.fit(x=X33_unif_train, y=Y_unif_train, batch_size=self.batch_size, epochs=self.nb_epoch,
callbacks=[earlystopping, checkpointer], validation_split=0.3, verbose=1)
# set the weights of the first cnn to the trained weights of the temporary cnn
self.cnn1.set_weights(temp_cnn.get_weights())
def train_model(model):
opt = 'rmsprop'
model_checkpoint = ModelCheckpoint(
filepath=BEST_MODEL_PATH,
monitor='val_acc',
verbose=0,
save_best_only=True,
mode='auto'
)
overfitting_stopper = EarlyStopping(
monitor='val_acc',
min_delta=0,
patience=5,
verbose=1,
mode='auto'
)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
model_history = model.fit(X_train, y_train,
batch_size = 64,
nb_epoch = 50,
#shuffle = True,
validation_split = 0.2,
#verbose = 2
callbacks = [overfitting_stopper, model_checkpoint]
)
def BiGRU(X_train, y_train, X_test, y_test, gru_units, dense_units, input_shape, \
batch_size, epochs, drop_out, patience):
model = Sequential()
reg = L1L2(l1=0.2, l2=0.2)
model.add(Bidirectional(GRU(units = gru_units, dropout= drop_out, activation='relu', recurrent_regularizer = reg,
return_sequences = True),
input_shape = input_shape,
merge_mode="concat"))
model.add(BatchNormalization())
model.add(TimeDistributed(Dense(dense_units, activation='relu')))
model.add(BatchNormalization())
model.add(Bidirectional(GRU(units = gru_units, dropout= drop_out, activation='relu', recurrent_regularizer=reg,
return_sequences = True),
merge_mode="concat"))
model.add(BatchNormalization())
model.add(Dense(units=1))
model.add(GlobalAveragePooling1D())
print(model.summary())
early_stopping = EarlyStopping(monitor="val_loss", patience = patience)
model.compile(loss='mse', optimizer= 'adam')
history_callback = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs,\
verbose=2, callbacks=[early_stopping], validation_data=[X_test, y_test], shuffle = True)
return model, history_callback
def build_keras_fit_callbacks(model_path):
return [
callbacks.EarlyStopping(
monitor='val_loss',
patience=20
#verbose=1
),
callbacks.ModelCheckpoint(
model_path,
monitor='val_loss',
save_best_only=True,
save_weights_only=True,
verbose=0
),
callbacks.ReduceLROnPlateau(
monitor='val_loss',
min_lr=1e-7,
factor=0.2,
verbose=0
)
]
def build_keras_fit_callbacks(model_path):
from keras import callbacks
return [
callbacks.EarlyStopping(
monitor='val_loss',
patience=20
#verbose=1
),
callbacks.ModelCheckpoint(
model_path,
monitor='val_loss',
save_best_only=True,
save_weights_only=True,
verbose=0
),
callbacks.ReduceLROnPlateau(
monitor='val_loss',
min_lr=1e-7,
factor=0.2,
verbose=0
)
]
def build_keras_fit_callbacks(model_path):
from keras import callbacks
return [
callbacks.EarlyStopping(
monitor='val_loss',
patience=20
#verbose=1
),
callbacks.ModelCheckpoint(
model_path,
monitor='val_loss',
save_best_only=True,
save_weights_only=True,
verbose=0
),
callbacks.ReduceLROnPlateau(
monitor='val_loss',
min_lr=1e-7,
factor=0.2,
verbose=0
)
]
def build_keras_fit_callbacks(model_path):
from keras import callbacks
return [
callbacks.EarlyStopping(
monitor='val_loss',
patience=20
#verbose=1
),
callbacks.ModelCheckpoint(
model_path,
monitor='val_loss',
save_best_only=True,
save_weights_only=True,
verbose=0
),
callbacks.ReduceLROnPlateau(
monitor='val_loss',
min_lr=1e-7,
factor=0.2,
verbose=0
)
]
def build_keras_fit_callbacks(model_path):
from keras import callbacks
return [
callbacks.EarlyStopping(
monitor='val_loss',
patience=20
#verbose=1
),
callbacks.ModelCheckpoint(
model_path,
monitor='val_loss',
save_best_only=True,
save_weights_only=True,
verbose=0
),
callbacks.ReduceLROnPlateau(
monitor='val_loss',
min_lr=1e-7,
factor=0.2,
verbose=0
)
]