def callbacks(self):
"""
:return:
"""
# TODO: Add ReduceLROnPlateau callback
cbs = []
tb = TensorBoard(log_dir=self.log_dir,
write_graph=True,
write_images=True)
cbs.append(tb)
best_model_filename = self.model_name + '_best.h5'
best_model = os.path.join(self.checkpoint_dir, best_model_filename)
save_best = ModelCheckpoint(best_model, save_best_only=True)
cbs.append(save_best)
checkpoints = ModelCheckpoint(filepath=self.checkpoint_file, verbose=1)
cbs.append(checkpoints)
reduce_lr = ReduceLROnPlateau(patience=1, verbose=1)
cbs.append(reduce_lr)
return cbs
python类ModelCheckpoint()的实例源码
def train(model, batch_size, nb_epoch, save_dir, train_data, val_data, char_set):
X_train, y_train = train_data[0], train_data[1]
sample_weight = get_sample_weight(y_train, char_set)
print 'X_train shape:', X_train.shape
print X_train.shape[0], 'train samples'
if os.path.exists(save_dir) == False:
os.mkdir(save_dir)
start_time = time.time()
save_path = save_dir + 'weights.{epoch:02d}-{val_loss:.2f}.hdf5'
check_pointer = ModelCheckpoint(save_path,
save_best_only=True)
history = model.fit(X_train, y_train, batch_size=batch_size, nb_epoch=nb_epoch,
validation_data=val_data,
validation_split=0.1,
callbacks=[check_pointer],
sample_weight=sample_weight
)
plot_loss_figure(history, save_dir + str(datetime.now()).split('.')[0].split()[1]+'.jpg')
print 'Training time(h):', (time.time()-start_time) / 3600
def lengthy_test(model, testrange=[5,10,20,40,80], epochs=100, verboose=True):
ts = datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
log_path = LOG_PATH_BASE + ts + "_-_" + model.name
tensorboard = TensorBoard(log_dir=log_path,
write_graph=False, #This eats a lot of space. Enable with caution!
#histogram_freq = 1,
write_images=True,
batch_size = model.batch_size,
write_grads=True)
model_saver = ModelCheckpoint(log_path + "/model.ckpt.{epoch:04d}.hdf5", monitor='loss', period=1)
callbacks = [tensorboard, TerminateOnNaN(), model_saver]
for i in testrange:
acc = test_model(model, sequence_length=i, verboose=verboose)
print("the accuracy for length {0} was: {1}%".format(i,acc))
train_model(model, epochs=epochs, callbacks=callbacks, verboose=verboose)
for i in testrange:
acc = test_model(model, sequence_length=i, verboose=verboose)
print("the accuracy for length {0} was: {1}%".format(i,acc))
return
def train_model(model, X, X_test, Y, Y_test):
batch_size = 100
epochs = 2
checkpoints = []
if not os.path.exists('Data/Checkpoints/'):
os.makedirs('Data/Checkpoints/')
checkpoints.append(ModelCheckpoint('Data/Checkpoints/best_weights.h5', monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1))
checkpoints.append(TensorBoard(log_dir='Data/Checkpoints/./logs', histogram_freq=0, write_graph=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None))
# Creates live data:
# For better yield. The duration of the training is extended.
# If you don't want, use this:
# model.fit(X, Y, batch_size=batch_size, epochs=epochs, validation_data=(X_test, Y_test), shuffle=True, callbacks=checkpoints)
generated_data = ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip = True, vertical_flip = False)
generated_data.fit(X)
model.fit_generator(generated_data.flow(X, Y, batch_size=batch_size), steps_per_epoch=X.shape[0]/6, epochs=epochs, validation_data=(X_test, Y_test), callbacks=checkpoints)
return model
def model(data, hidden_layers, hidden_neurons, output_file, validation_split=0.9):
train_n = int(validation_split * len(data))
batch_size = 50
train_data = data[:train_n,:]
val_data = data[train_n:,:]
input_sh = Input(shape=(data.shape[1],))
encoded = noise.GaussianNoise(0.2)(input_sh)
for i in range(hidden_layers):
encoded = Dense(hidden_neurons[i], activation='relu')(encoded)
encoded = noise.GaussianNoise(0.2)(encoded)
decoded = Dense(hidden_neurons[-2], activation='relu')(encoded)
for j in range(hidden_layers-3,-1,-1):
decoded = Dense(hidden_neurons[j], activation='relu')(decoded)
decoded = Dense(data.shape[1], activation='sigmoid')(decoded)
autoencoder = Model(input=input_sh, output=decoded)
autoencoder.compile(optimizer='adadelta', loss='mse')
checkpointer = ModelCheckpoint(filepath='data/bestmodel' + output_file + ".hdf5", verbose=1, save_best_only=True)
earlystopper = EarlyStopping(monitor='val_loss', patience=15, verbose=1)
train_generator = DataGenerator(batch_size)
train_generator.fit(train_data, train_data)
val_generator = DataGenerator(batch_size)
val_generator.fit(val_data, val_data)
autoencoder.fit_generator(train_generator,
samples_per_epoch=len(train_data),
nb_epoch=100,
validation_data=val_generator,
nb_val_samples=len(val_data),
max_q_size=batch_size,
callbacks=[checkpointer, earlystopper])
enco = Model(input=input_sh, output=encoded)
enco.compile(optimizer='adadelta', loss='mse')
reprsn = enco.predict(data)
return reprsn
def get_callbacks(self, model_prefix='Model'):
"""
Creates a list of callbacks that can be used during training to create a
snapshot ensemble of the model.
Args:
model_prefix: prefix for the filename of the weights.
Returns: list of 3 callbacks [ModelCheckpoint, LearningRateScheduler,
SnapshotModelCheckpoint] which can be provided to the 'fit' function
"""
if not os.path.exists('weights/'):
os.makedirs('weights/')
callback_list = [ModelCheckpoint('weights/%s-Best.h5' % model_prefix, monitor='val_acc',
save_best_only=True, save_weights_only=True),
LearningRateScheduler(schedule=self._cosine_anneal_schedule),
SnapshotModelCheckpoint(self.T, self.M, fn_prefix='weights/%s' % model_prefix)]
return callback_list
def train_multilabel_bts(lang_db, imdb, pretrained, max_iters = 1000, loss_func = 'squared_hinge', box_method = 'random'):
# Create callback_list.
dir_path = osp.join('output', 'bts_ckpt', imdb.name)
tensor_path = osp.join(dir_path, 'log_dir')
if not osp.exists(dir_path):
os.makedirs(dir_path)
if not osp.exists(tensor_path):
os.makedirs(tensor_path)
ckpt_save = osp.join(dir_path, lang_db.name + '_multi_label_fixed_' + 'weights-{epoch:02d}.hdf5')
checkpoint = ModelCheckpoint(ckpt_save, monitor='loss', verbose=1, save_best_only=True)
early_stop = EarlyStopping(monitor='loss', min_delta=0, patience=3, verbose=0, mode='auto')
tensorboard = TensorBoard(log_dir=dir_path, histogram_freq=2000, write_graph=True, write_images=False)
callback_list = [checkpoint, early_stop, tensorboard]
pretrained.fit_generator(load_multilabel_data(imdb, lang_db, pretrained, box_method),
steps_per_epoch = 5000,
epochs = max_iters,
verbose = 1,
callbacks = callback_list,
workers = 1)
pretrained.save(osp.join(dir_path, 'model_fixed' + imdb.name + '_' + lang_db.name + '_ML_' + box_method + '_' + loss_func + '.hdf5'))
def fit(self, train_X, val_X, nb_epoch=50, batch_size=100, feature_weights=None):
print 'Training autoencoder'
optimizer = Adadelta(lr=1.5)
# optimizer = Adam()
# optimizer = Adagrad()
if feature_weights is None:
self.autoencoder.compile(optimizer=optimizer, loss='binary_crossentropy') # kld, binary_crossentropy, mse
else:
print 'Using weighted loss'
self.autoencoder.compile(optimizer=optimizer, loss=weighted_binary_crossentropy(feature_weights)) # kld, binary_crossentropy, mse
self.autoencoder.fit(train_X[0], train_X[1],
nb_epoch=nb_epoch,
batch_size=batch_size,
shuffle=True,
validation_data=(val_X[0], val_X[1]),
callbacks=[
ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.01),
EarlyStopping(monitor='val_loss', min_delta=1e-5, patience=5, verbose=1, mode='auto'),
# ModelCheckpoint(self.model_save_path, monitor='val_loss', save_best_only=True, verbose=0),
]
)
return self
def train_model(self):
if self.verbose:
print 'training model ... '
start_time = time.time()
self.checkpointer = ModelCheckpoint(filepath=self.weights_filename, verbose=1, save_best_only=True)
self.history = History()
self.model.fit_generator(self.datagen.flow(self.xs_train, self.ys_train, batch_size=32),
samples_per_epoch=len(self.xs_train), nb_epoch=self.num_training_epochs,
validation_data=(self.xs_val, self.ys_val),
callbacks=[self.checkpointer, self.history])
if self.verbose:
end_time = time.time()
self.print_time(start_time, end_time,'training model')
def finetune_model(self):
if self.verbose:
print 'training model ... '
start_time = time.time()
self.checkpointer = ModelCheckpoint(filepath=self.weights_filename, verbose=1, save_best_only=True)
self.history = History()
self.model.fit_generator(self.datagen.flow(self.xs_train, self.ys_train, batch_size=32),
samples_per_epoch=len(self.xs_train), nb_epoch=self.num_training_epochs,
validation_data=(self.xs_val, self.ys_val),
callbacks=[self.checkpointer, self.history])
if self.verbose:
end_time = time.time()
self.print_time(start_time, end_time,'training model')
def runner(model, epochs):
initial_LR = 0.001
if not use_multiscale and not use_multicrop: training_gen, val_gen = DataGen()
else: training_gen, val_gen = ms_traingen(), ms_valgen()
model.compile(optimizer=SGD(initial_LR, momentum=0.9, nesterov=True), loss='binary_crossentropy')
val_checkpoint = ModelCheckpoint('bestval.h5','val_loss',1, True)
cur_checkpoint = ModelCheckpoint('current.h5')
# def lrForEpoch(i): return initial_LR
lrScheduler = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, cooldown=1, verbose=1)
print 'Model compiled.'
try:
model.fit_generator(training_gen,samples_per_epoch,epochs,
verbose=1,validation_data=val_gen,nb_val_samples=nb_val_samples,
callbacks=[val_checkpoint, cur_checkpoint, lrScheduler])
except Exception as e:
print e
finally:
fname = dumper(model,'cnn')
print 'Model saved to disk at {}'.format(fname)
return model
def _get_callbacks(self):
"""Return callbacks to pass into the Model.fit method
Note: This simply returns statically instantiated callbacks. In the
future it could be altered to allow for callbacks that are specified
and configured via a training config.
"""
fpath_history = os.path.join(self.output_dir, 'history.csv')
fpath_weights = os.path.join(self.output_dir, 'weights.h5')
csv_logger = CSVLogger(filename=fpath_history)
model_checkpoint = ModelCheckpoint(
filepath=fpath_weights, verbose=True
)
callbacks = [csv_logger, model_checkpoint]
return callbacks
def _train_model():
data_info = load_organized_data_info(IMGS_DIM_3D[1])
dir_tr = data_info['dir_tr']
dir_val = data_info['dir_val']
gen_tr, gen_val = train_val_dirs_generators(BATCH_SIZE, dir_tr, dir_val)
model = _cnn(IMGS_DIM_3D)
model.fit_generator(
generator=gen_tr,
nb_epoch=MAX_EPOCHS,
samples_per_epoch=data_info['num_tr'],
validation_data=gen_val,
nb_val_samples=data_info['num_val'],
callbacks=[ModelCheckpoint(CNN_MODEL_FILE, save_best_only=True)],
verbose=2)
def train(self, n_iterations):
print("Training network...")
# Recover losses from previous run
if (self.option == 'continue'):
with open("{0}_{1}_loss.json".format(self.root, self.depth), 'r') as f:
losses = json.load(f)
else:
losses = []
self.checkpointer = ModelCheckpoint(filepath="{0}_{1}_weights.hdf5".format(self.root, self.depth), verbose=1, save_best_only=True)
self.history = LossHistory(self.root, self.depth, losses, {'name': '{0}_{1}'.format(self.root, self.depth), 'init_t': time.asctime()})
self.reduce_lr = LearningRateScheduler(self.learning_rate)
self.metrics = self.model.fit_generator(self.training_generator(), self.batchs_per_epoch_training, epochs=n_iterations,
callbacks=[self.checkpointer, self.history, self.reduce_lr], validation_data=self.validation_generator(), validation_steps=self.batchs_per_epoch_validation)
self.history.finalize()
def finetuning_callbacks(checkpoint_path, patience, verbose):
""" Callbacks for model training.
# Arguments:
checkpoint_path: Where weight checkpoints should be saved.
patience: Number of epochs with no improvement after which
training will be stopped.
# Returns:
Array with training callbacks that can be passed straight into
model.fit() or similar.
"""
cb_verbose = (verbose >= 2)
checkpointer = ModelCheckpoint(monitor='val_loss', filepath=checkpoint_path,
save_best_only=True, verbose=cb_verbose)
earlystop = EarlyStopping(monitor='val_loss', patience=patience,
verbose=cb_verbose)
return [checkpointer, earlystop]
def trainmodel(self, isalldata):
self.buildmodel_rcnn4_att_titledsp()
import time
cur_time = time.strftime('%Y-%m-%d-%H-%M', time.localtime(time.time()))
checkpointer = ModelCheckpoint(filepath=self.savedir + "/" + cur_time + "_model-{epoch:02d}.hdf5", period=1)
zhihuMetrics = ZHIHUMetrics()
if isalldata:
self.model.fit([self.titlechar_array, self.titleword_array, self.dspchar_array, self.dspword_array],
self.y,
epochs=self.num_epochs, batch_size=self.batch_size, verbose=1,
callbacks=[checkpointer])
else:#with 9:1 validation
self.model.fit([self.titlechar_array, self.titleword_array, self.dspchar_array, self.dspword_array],
self.y,
validation_split=0.1,
epochs=self.num_epochs, batch_size=self.batch_size, verbose=1,
callbacks=[checkpointer, zhihuMetrics])
self.save_model()
def init_callbacks(self, for_worker=False):
"""Prepares all keras callbacks to be used in training.
Automatically attaches a History callback to the end of the callback list.
If for_worker is True, leaves out callbacks that only make sense
with validation enabled."""
import keras.callbacks as cbks
remove_for_worker = [cbks.EarlyStopping, cbks.ModelCheckpoint]
if for_worker:
for obj in remove_for_worker:
self.callbacks_list = [ c for c in self.callbacks_list
if not isinstance(c, obj) ]
self.model.history = cbks.History()
self.callbacks = cbks.CallbackList( self.callbacks_list + [self.model.history] )
# it's possible to callback a different model than self
# (used by Sequential models)
if hasattr(self.model, 'callback_model') and self.model.callback_model:
self.callback_model = self.model.callback_model
else:
self.callback_model = self.model
self.callbacks.set_model(self.callback_model)
self.callback_model.stop_training = False
load_deepmodels.py 文件源码
项目:Youtube8mdataset_kagglechallenge
作者: jasonlee27
项目源码
文件源码
阅读 27
收藏 0
点赞 0
评论 0
def train(self, model, saveto_path=''):
x_train, y_train = get_data(self.train_data_path, "train", "frame", self.feature_type)
print('%d training frame level samples.' % len(x_train))
x_valid, y_valid = get_data(self.valid_data_path, "valid", "frame", self.feature_type)
print('%d validation frame level samples.' % len(x_valid))
sgd = SGD(lr=0.01,
decay=1e-6,
momentum=0.9,
nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
callbacks = list()
callbacks.append(CSVLogger(LOG_FILE))
callbacks.append(ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=2, min_lr=0.0001))
if saveto_path:
callbacks.append(ModelCheckpoint(filepath=MODEL_WEIGHTS, verbose=1))
model.fit(x_train,
y_train,
epochs=5,
callbacks=callbacks,
validation_data=(x_valid, y_valid))
# Save the weights on completion.
if saveto_path:
model.save_weights(saveto_path)
def train_chrom_labeller(model, train_tuple, valid_tuple, save_weight_hd5):
checkpointer = ModelCheckpoint(filepath=save_weight_hd5, verbose=1, save_best_only=True)
earlystopper = EarlyStopping(monitor='val_loss', patience=3, verbose=1)
history = model.fit(train_tuple[0], train_tuple[1],
batch_size=32, nb_epoch=150, shuffle=False,
validation_data=(valid_tuple[0], valid_tuple[1]),
callbacks=[checkpointer,earlystopper])
plot_metric_history(history, weight_path_to_title(save_weight_hd5))
return model
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# ~~~~~~~ Training Data ~~~~~~~~~~~
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def train_model(self, batch_size=32, nb_epoch=50,load_data = False,old_weight_path=''):
print("start training model...")
if load_data:
train_data, train_labels, valid_data, valid_labels = self.load_data()
else:
train_data, train_labels, valid_data, valid_labels = self.prepare_train_data()
model = self.baseModel()
if old_weight_path != '':
print("load last epoch model to continue train")
model.load_weights(old_weight_path)
model.fit(train_data, train_labels, batch_size=batch_size,
epochs=nb_epoch,
validation_data=(valid_data, valid_labels),
callbacks=[ModelCheckpoint("output/weights.{epoch:02d}-{val_loss:.2f}.hdf5",
monitor='val_loss',
verbose=1,
save_best_only=True, save_weights_only=False, mode='min', period=2),
ProgbarLogger()])
return model
def __init__(self, filepath, model,
base_lr=1e-3, decay_rate=1,
decay_after_n_epoch=10, patience=20,
mode='min', monitor='val_loss'):
self.base_lr = base_lr
self.model = model
self.decay_rate = decay_rate
self.decay_after_n_epoch = decay_after_n_epoch
self.callbacks = [ModelCheckpoint(filepath = filepath,
monitor = monitor,
verbose = 2,
save_best_only = True,
save_weights_only = True,
mode = mode),
EarlyStopping(monitor = monitor, patience = patience, verbose=2, mode = mode),
LearningRateScheduler(self._scheduler)]
def _build_callbacks(self):
"""Build callback objects.
Returns:
A list containing the following callback objects:
- TensorBoard
- ModelCheckpoint
"""
tensorboard_path = os.path.join(self.checkpoints_path, 'tensorboard')
tensorboard = TensorBoard(log_dir=tensorboard_path)
checkpoint_path = os.path.join(self.checkpoints_path, self.checkpoint_file_format)
checkpointer = ModelCheckpoint(filepath=checkpoint_path, verbose=1, save_best_only=self.save_best_only)
return [tensorboard, checkpointer]
def _build_callbacks(self):
"""Build callback objects.
Returns:
A list containing the following callback objects:
- TensorBoard
- ModelCheckpoint
"""
tensorboard_path = os.path.join(self.checkpoints_path, 'tensorboard')
tensorboard = TensorBoard(log_dir=tensorboard_path)
checkpoint_path = os.path.join(self.checkpoints_path, self.checkpoint_file_format)
checkpointer = ModelCheckpoint(filepath=checkpoint_path, verbose=1, save_best_only=self.save_best_only)
return [tensorboard, checkpointer]
def get_callbacks(config_data, appendix=''):
ret_callbacks = []
model_stored = False
callbacks = config_data['callbacks']
if K._BACKEND == 'tensorflow':
tensor_board = TensorBoard(log_dir=os.path.join('logging', config_data['tb_log_dir']), histogram_freq=10)
ret_callbacks.append(tensor_board)
for callback in callbacks:
if callback['name'] == 'early_stopping':
ret_callbacks.append(EarlyStopping(monitor=callback['monitor'], patience=callback['patience'], verbose=callback['verbose'], mode=callback['mode']))
elif callback['name'] == 'model_checkpoit':
model_stored = True
path = config_data['output_path']
basename = config_data['output_basename']
base_path = os.path.join(path, basename)
opath = os.path.join(base_path, 'best_model{}.h5'.format(appendix))
save_best = bool(callback['save_best_only'])
ret_callbacks.append(ModelCheckpoint(filepath=opath, verbose=callback['verbose'], save_best_only=save_best, monitor=callback['monitor'], mode=callback['mode']))
return ret_callbacks, model_stored
def train_model(model, args, X_train, X_valid, y_train, y_valid):
"""
Train the model
"""
checkpoint = ModelCheckpoint('model-{epoch:03d}.h5',
monitor='val_loss',
verbose=0,
save_best_only=args.save_best_only,
mode='auto')
model.compile(loss='mean_squared_error', optimizer=Adam(lr=args.learning_rate))
model.fit_generator(batch_generator(args.data_dir, X_train, y_train, args.batch_size, True),
args.samples_per_epoch,
args.nb_epoch,
max_q_size=1,
validation_data=batch_generator(args.data_dir, X_valid, y_valid, args.batch_size, False),
nb_val_samples=len(X_valid),
callbacks=[checkpoint],
verbose=1)
def train(self, train_data, validation_data, folder):
context_data, question_data, answer_data, y_train = train_data
context_data_v, question_data_v, answer_data_v, y_val = validation_data
print("Model Fitting")
filepath = folder + "structures/cos-lstm-nn" + VERSION + "-final-{epoch:02d}-{val_acc:.2f}.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=0, save_best_only=True, mode='max')
model_json = self.model.to_json()
with open(folder + "/structures/cos-lstm-model" + VERSION + ".json", "w") as json_file:
json_file.write(model_json)
self.model.summary()
import numpy as np
context_data = np.array(list(map(lambda x: x[:MAX_SEQUENCE_LENGTH_C], context_data)))
context_data_v = np.array(list(map(lambda x: x[:MAX_SEQUENCE_LENGTH_C], context_data_v)))
self.model.fit({'context': context_data, 'question': question_data, 'answer': answer_data}, y_train,
validation_data=({'context': context_data_v, 'question': question_data_v, 'answer': answer_data_v}, y_val),
epochs=50, batch_size=256, callbacks=[checkpoint], verbose=2)
def fit_cnn1(self, X33_train, Y_train, X33_unif_train, Y_unif_train):
# Create temp cnn with input shape=(4,33,33,)
input33 = Input(shape=(4, 33, 33))
output_cnn = self.one_block_model(input33)
output_cnn = Reshape((5,))(output_cnn)
# Cnn compiling
temp_cnn = Model(inputs=input33, outputs=output_cnn)
sgd = SGD(lr=self.learning_rate, momentum=self.momentum_rate, decay=self.decay_rate, nesterov=False)
temp_cnn.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
# Stop the training if the monitor function doesn't change after patience epochs
earlystopping = EarlyStopping(monitor='val_loss', patience=2, verbose=1, mode='auto')
# Save model after each epoch to check/bm_epoch#-val_loss
checkpointer = ModelCheckpoint(filepath="/home/ixb3/Scrivania/check/bm_{epoch:02d}-{val_loss:.2f}.hdf5", verbose=1)
# First-phase training with uniformly distribuited training set
temp_cnn.fit(x=X33_train, y=Y_train, batch_size=self.batch_size, epochs=self.nb_epoch,
callbacks=[earlystopping, checkpointer], validation_split=0.3, verbose=1)
# fix all the layers of the temporary cnn except the output layer for the second-phase
temp_cnn = self.freeze_model(temp_cnn, freeze_output=False)
# Second-phase training of the output layer with training set with real distribution probabily
temp_cnn.fit(x=X33_unif_train, y=Y_unif_train, batch_size=self.batch_size, epochs=self.nb_epoch,
callbacks=[earlystopping, checkpointer], validation_split=0.3, verbose=1)
# set the weights of the first cnn to the trained weights of the temporary cnn
self.cnn1.set_weights(temp_cnn.get_weights())
def train_model(model):
opt = 'rmsprop'
model_checkpoint = ModelCheckpoint(
filepath=BEST_MODEL_PATH,
monitor='val_acc',
verbose=0,
save_best_only=True,
mode='auto'
)
overfitting_stopper = EarlyStopping(
monitor='val_acc',
min_delta=0,
patience=5,
verbose=1,
mode='auto'
)
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
model_history = model.fit(X_train, y_train,
batch_size = 64,
nb_epoch = 50,
#shuffle = True,
validation_split = 0.2,
#verbose = 2
callbacks = [overfitting_stopper, model_checkpoint]
)
def EES_train():
EES = model_EES16()
EES.compile(optimizer=adam(lr=0.0003), loss='mse')
print EES.summary()
data, label = pd.read_training_data("./train.h5")
val_data, val_label = pd.read_training_data("./val.h5")
checkpoint = ModelCheckpoint("EES_check.h5", monitor='val_loss', verbose=1, save_best_only=True,
save_weights_only=False, mode='min')
callbacks_list = [checkpoint]
history_callback = EES.fit(data, label, batch_size=64, validation_data=(val_data, val_label),
callbacks=callbacks_list, shuffle=True, nb_epoch=200, verbose=1)
pandas.DataFrame(history_callback.history).to_csv("history.csv")
EES.save_weights("EES_final.h5")
def build_keras_fit_callbacks(model_path):
return [
callbacks.EarlyStopping(
monitor='val_loss',
patience=20
#verbose=1
),
callbacks.ModelCheckpoint(
model_path,
monitor='val_loss',
save_best_only=True,
save_weights_only=True,
verbose=0
),
callbacks.ReduceLROnPlateau(
monitor='val_loss',
min_lr=1e-7,
factor=0.2,
verbose=0
)
]