python类ones_like()的实例源码

rnn_cell.py 文件源码 项目:yoctol-keras-layer-zoo 作者: Yoctol 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def get_constants(self, inputs, training=None):
        constants = self.recurrent_layer.get_constants(
            inputs=inputs,
            training=training
        )

        if 0 < self.dense_dropout < 1:
            ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.recurrent_layer.units))

            def dropped_inputs():
                return K.dropout(ones, self.dense_dropout)
            out_dp_mask = [K.in_train_phase(dropped_inputs,
                                            ones,
                                            training=training)]
            constants.append(out_dp_mask)
        else:
            constants.append([K.cast_to_floatx(1.)])

        return constants
pooling.py 文件源码 项目:onto-lstm 作者: pdasigi 项目源码 文件源码 阅读 42 收藏 0 点赞 0 评论 0
def call(self, x, mask=None):
        mean = super(IntraAttention, self).call(x, mask)
        # x: (batch_size, input_length, input_dim)
        # mean: (batch_size, input_dim)
        ones = K.expand_dims(K.mean(K.ones_like(x), axis=(0, 2)), dim=0)  # (1, input_length)
        # (batch_size, input_length, input_dim)
        tiled_mean = K.permute_dimensions(K.dot(K.expand_dims(mean), ones), (0, 2, 1))
        if mask is not None:
            if K.ndim(mask) > K.ndim(x):
                # Assuming this is because of the bug in Bidirectional. Temporary fix follows.
                # TODO: Fix Bidirectional.
                mask = K.any(mask, axis=(-2, -1))
            if K.ndim(mask) < K.ndim(x):
                mask = K.expand_dims(mask)
            x = switch(mask, x, K.zeros_like(x))
        # (batch_size, input_length, proj_dim)
        projected_combination = K.tanh(K.dot(x, self.vector_projector) + K.dot(tiled_mean, self.mean_projector))
        scores = K.dot(projected_combination, self.scorer)  # (batch_size, input_length)
        weights = K.softmax(scores)  # (batch_size, input_length)
        attended_x = K.sum(K.expand_dims(weights) * x, axis=1)  # (batch_size, input_dim)
        return attended_x
rnnlayer.py 文件源码 项目:recurrent-attention-for-QA-SQUAD-based-on-keras 作者: wentaozhu 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def get_constants(self, inputs, training=None):
        constants = []
        '''if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.units))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:'''
        constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants
rnnlayer.py 文件源码 项目:recurrent-attention-for-QA-SQUAD-based-on-keras 作者: wentaozhu 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_constants(self, inputs, training=None):
        constants = []
        '''if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.units))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:'''
        constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants
rnnlayer.py 文件源码 项目:recurrent-attention-for-QA-SQUAD-based-on-keras 作者: wentaozhu 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_constants(self, inputs, training=None):
        constants = []
        '''if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.units))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:'''
        constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants
QnA.py 文件源码 项目:recurrent-attention-for-QA-SQUAD-based-on-keras 作者: wentaozhu 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants
ternary_ops.py 文件源码 项目:nn_playground 作者: DingKe 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def _ternarize(W, H=1):
    '''The weights' ternarization function, 

    # References:
    - [Recurrent Neural Networks with Limited Numerical Precision](http://arxiv.org/abs/1608.06902)
    - [Ternary Weight Networks](http://arxiv.org/abs/1605.04711)
    '''
    W /= H

    ones = K.ones_like(W)
    zeros = K.zeros_like(W)
    Wt = switch(W > 0.5, ones, switch(W <= -0.5, -ones, zeros))

    Wt *= H

    return Wt
lstm2ntm.py 文件源码 项目:NTM-Keras 作者: SigmaQuan 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])
        return constants
custom_layers.py 文件源码 项目:EUNN-theano 作者: iguanaus 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
            constants.append(B_U)
        else:
            constants.append(K.cast_to_floatx(1.))
        if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, input_dim))
            B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
            constants.append(B_W)
        else:
            constants.append(K.cast_to_floatx(1.))
        return constants
metrics.py 文件源码 项目:deepcpg 作者: cangermueller 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def contingency_table(y, z):
    """Compute contingency table."""
    y = K.round(y)
    z = K.round(z)

    def count_matches(a, b):
        tmp = K.concatenate([a, b])
        return K.sum(K.cast(K.all(tmp, -1), K.floatx()))

    ones = K.ones_like(y)
    zeros = K.zeros_like(y)
    y_ones = K.equal(y, ones)
    y_zeros = K.equal(y, zeros)
    z_ones = K.equal(z, ones)
    z_zeros = K.equal(z, zeros)

    tp = count_matches(y_ones, z_ones)
    tn = count_matches(y_zeros, z_zeros)
    fp = count_matches(y_zeros, z_ones)
    fn = count_matches(y_ones, z_zeros)

    return (tp, tn, fp, fn)
recurrent_convolutional.py 文件源码 项目:keras-prednet 作者: kunimasa-kawasaki 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * self.output_dim, 1)
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * input_dim, 1)
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])
        return constants
rhn.py 文件源码 项目:deep-models 作者: LaurentMazare 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_constants(self, x):
    constants = []
    if 0 < self.dropout_U < 1:
      ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
      ones = K.tile(ones, (1, self.output_dim))
      B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
      constants.append(B_U)
    else:
      constants.append([K.cast_to_floatx(1.) for _ in range(3)])

    if 0 < self.dropout_W < 1:
      input_shape = self.input_spec[0].shape
      input_dim = input_shape[-1]
      ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
      ones = K.tile(ones, (1, input_dim))
      B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
      constants.append(B_W)
    else:
      constants.append([K.cast_to_floatx(1.) for _ in range(3)])
    return constants
Networks.py 文件源码 项目:KerasCog 作者: ABAtanasov 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
            constants.append(B_U)
        else:
            constants.append(K.cast_to_floatx(1.0))
        if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, input_dim))
            B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
            constants.append(B_W)
        else:
            constants.append(K.cast_to_floatx(1.0))
        return constants
detregionloss_bnum.py 文件源码 项目:VGG 作者: jackfan00 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def yoloconfidloss(y_true, y_pred, t):
    real_y_true = tf.select(t, y_true, K.zeros_like(y_true))
    pobj = K.sigmoid(y_pred)
    lo = K.square(real_y_true-pobj)
    value_if_true = lamda_confid_obj*(lo)
    value_if_false = lamda_confid_noobj*(lo)
    loss1 = tf.select(t, value_if_true, value_if_false)

    loss = K.mean(loss1) 
    #
    noobj = tf.select(t, K.zeros_like(y_pred), pobj)
    noobjcount = tf.select(t, K.zeros_like(y_pred), K.ones_like(y_pred))
    ave_anyobj = K.sum(noobj) / K.sum(noobjcount)
    #ave_anyobj = K.mean(pobj)
    obj = tf.select(t, pobj, K.zeros_like(y_pred))
    objcount = tf.select(t, K.ones_like(y_pred), K.zeros_like(y_pred))
    #ave_obj = K.mean( K.sum(obj, axis=1) / (K.sum(objcount, axis=1)+0.000001) ) # prevent div 0
    ave_obj =  K.sum(obj) / (K.sum(objcount)+0.000001)  # prevent div 0
    return loss, ave_anyobj, ave_obj

# shape is (gridcells*2,)
custom_layers.py 文件源码 项目:urnn 作者: stwisdom 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
            constants.append(B_U)
        else:
            constants.append(K.cast_to_floatx(1.))
        if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, input_dim))
            B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
            constants.append(B_W)
        else:
            constants.append(K.cast_to_floatx(1.))
        return constants
losses.py 文件源码 项目:Kaggle-Carvana-Image-Masking-Challenge 作者: petrosgk 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def weighted_dice_loss(y_true, y_pred):
    y_true = K.cast(y_true, 'float32')
    y_pred = K.cast(y_pred, 'float32')
    # if we want to get same size of output, kernel size must be odd number
    if K.int_shape(y_pred)[1] == 128:
        kernel_size = 11
    elif K.int_shape(y_pred)[1] == 256:
        kernel_size = 21
    elif K.int_shape(y_pred)[1] == 512:
        kernel_size = 21
    elif K.int_shape(y_pred)[1] == 1024:
        kernel_size = 41
    else:
        raise ValueError('Unexpected image size')
    averaged_mask = K.pool2d(
        y_true, pool_size=(kernel_size, kernel_size), strides=(1, 1), padding='same', pool_mode='avg')
    border = K.cast(K.greater(averaged_mask, 0.005), 'float32') * K.cast(K.less(averaged_mask, 0.995), 'float32')
    weight = K.ones_like(averaged_mask)
    w0 = K.sum(weight)
    weight += border * 2
    w1 = K.sum(weight)
    weight *= (w0 / w1)
    loss = 1 - weighted_dice_coeff(y_true, y_pred, weight)
    return loss
losses.py 文件源码 项目:Kaggle-Carvana-Image-Masking-Challenge 作者: petrosgk 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def weighted_bce_dice_loss(y_true, y_pred):
    y_true = K.cast(y_true, 'float32')
    y_pred = K.cast(y_pred, 'float32')
    # if we want to get same size of output, kernel size must be odd number
    if K.int_shape(y_pred)[1] == 128:
        kernel_size = 11
    elif K.int_shape(y_pred)[1] == 256:
        kernel_size = 21
    elif K.int_shape(y_pred)[1] == 512:
        kernel_size = 21
    elif K.int_shape(y_pred)[1] == 1024:
        kernel_size = 41
    else:
        raise ValueError('Unexpected image size')
    averaged_mask = K.pool2d(
        y_true, pool_size=(kernel_size, kernel_size), strides=(1, 1), padding='same', pool_mode='avg')
    border = K.cast(K.greater(averaged_mask, 0.005), 'float32') * K.cast(K.less(averaged_mask, 0.995), 'float32')
    weight = K.ones_like(averaged_mask)
    w0 = K.sum(weight)
    weight += border * 2
    w1 = K.sum(weight)
    weight *= (w0 / w1)
    loss = weighted_bce_loss(y_true, y_pred, weight) + (1 - weighted_dice_coeff(y_true, y_pred, weight))
    return loss
separable_RNN.py 文件源码 项目:New_Layers-Keras-Tensorflow 作者: WeidiXie 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
            constants.append(B_U)
        else:
            constants.append(K.cast_to_floatx(1.))
        if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
            constants.append(B_W)
        else:
            constants.append(K.cast_to_floatx(1.))
        return constants
layer_normalization_RNN.py 文件源码 项目:New_Layers-Keras-Tensorflow 作者: WeidiXie 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
            constants.append(B_U)
        else:
            constants.append(K.cast_to_floatx(1.))
        if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
            constants.append(B_W)
        else:
            constants.append(K.cast_to_floatx(1.))
        return constants
rtn.py 文件源码 项目:ikelos 作者: braingineer 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * self.output_dim, 1)
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * input_dim, 1)
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])
        return constants
rtn.py 文件源码 项目:ikelos 作者: braingineer 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * self.output_dim, 1)
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * input_dim, 1)
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants
my_recurrent.py 文件源码 项目:text_classification 作者: senochow 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(2)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(2)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(2)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(2)])
        return constants
QuestionPooling.py 文件源码 项目:R-NET-in-Keras 作者: YerevaNN 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def call(self, inputs, mask=None):
        assert(isinstance(inputs, list) and len(inputs) == 5)
        uQ, WQ_u, WQ_v, v, VQ_r = inputs
        uQ_mask = mask[0] if mask is not None else None

        ones = K.ones_like(K.sum(uQ, axis=1, keepdims=True)) # (B, 1, 2H)
        s_hat = K.dot(uQ, WQ_u)
        s_hat += K.dot(ones, K.dot(WQ_v, VQ_r))
        s_hat = K.tanh(s_hat)
        s = K.dot(s_hat, v)
        s = K.batch_flatten(s)

        a = softmax(s, mask=uQ_mask, axis=1)

        rQ = K.batch_dot(uQ, a, axes=[1, 1])

        return rQ
rnnrbm.py 文件源码 项目:keras_bn_library 作者: bnsnapper 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.hidden_recurrent_dim))
            B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
            constants.append(B_U)
        else:
            constants.append(K.cast_to_floatx(1.))

        if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, input_dim))
            B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
            constants.append(B_W)
        else:
            constants.append(K.cast_to_floatx(1.))

        return constants
recurrent.py 文件源码 项目:keras_bn_library 作者: bnsnapper 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.input_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])
        return constants
cgan.py 文件源码 项目:shenlan 作者: vector-1127 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def discriminator_loss(y_true,y_pred):
    BATCH_SIZE=10
    return K.mean(K.binary_crossentropy(K.flatten(y_pred), K.concatenate([K.ones_like(K.flatten(y_pred[:BATCH_SIZE,:,:,:])),K.zeros_like(K.flatten(y_pred[:BATCH_SIZE,:,:,:])) ]) ), axis=-1)
cgan.py 文件源码 项目:shenlan 作者: vector-1127 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def discriminator_on_generator_loss(y_true,y_pred):
    BATCH_SIZE=10
    return K.mean(K.binary_crossentropy(K.flatten(y_pred), K.ones_like(K.flatten(y_pred))), axis=-1)
layers.py 文件源码 项目:segmentation_DLMI 作者: imatge-upc 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def complementary_mask(x):
    return K.ones_like(x) - x
layers.py 文件源码 项目:segmentation_DLMI 作者: imatge-upc 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def fill_background_mask(x):
    tensor, mask = x
    rep = K.int_shape(tensor)[4] - 1
    full_mask = K.ones_like(mask) - mask
    K.repeat_elements(mask, rep, axis=4)

    return tensor + full_mask
metrics.py 文件源码 项目:segmentation_DLMI 作者: imatge-upc 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def dice_whole_mod(y_true, y_pred):
    """
    Computes the Sorensen-Dice metric, where P come from class 1,2,3,4,0
                    TP
        Dice = 2 -------
                  T + P
    Parameters
    ----------
    y_true : keras.placeholder
        Placeholder that contains the ground truth labels of the classes
    y_pred : keras.placeholder
        Placeholder that contains the class prediction

    Returns
    -------
    scalar
        Dice metric
    """
    # mask = K.expand_dims(K.sum(y_true,axis=4),axis=4)
    # cmp_mask = K.concatenate([K.ones_like(mask) - mask,K.zeros_like(mask), K.zeros_like(mask)],axis=4)
    # y_pred = y_pred + cmp_mask

    y_true = y_true[:,:,:,:,:3]
    y_pred_decision = tf.floor((y_pred  + K.epsilon()) / K.max(y_pred, axis=4, keepdims=True))

    mask_true = K.sum(y_true, axis=4)
    mask_pred = K.sum(y_pred_decision, axis=4) * K.sum(y_true, axis=4)

    y_sum = K.sum(mask_true * mask_pred)

    return (2. * y_sum + K.epsilon()) / (K.sum(mask_true) + K.sum(mask_pred) + K.epsilon())


问题


面经


文章

微信
公众号

扫码关注公众号