python类preprocess_input()的实例源码

utils.py 文件源码 项目:neural-style-keras 作者: robertomest 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def preprocess_image_crop(image_path, img_size):
    '''
    Preprocess the image scaling it so that its smaller size is img_size.
    The larger size is then cropped in order to produce a square image.
    '''
    img = load_img(image_path)
    scale = float(img_size) / min(img.size)
    new_size = (int(np.ceil(scale * img.size[0])), int(np.ceil(scale * img.size[1])))
    # print('old size: %s,new size: %s' %(str(img.size), str(new_size)))
    img = img.resize(new_size, resample=Image.BILINEAR)
    img = img_to_array(img)
    crop_h = img.shape[0] - img_size
    crop_v = img.shape[1] - img_size
    img = img[crop_h:img_size+crop_h, crop_v:img_size+crop_v, :]
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img

# util function to open, resize and format pictures into appropriate tensors
utils.py 文件源码 项目:neural-style-keras 作者: robertomest 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def preprocess_image_scale(image_path, img_size=None):
    '''
    Preprocess the image scaling it so that its larger size is max_size.
    This function preserves aspect ratio.
    '''
    img = load_img(image_path)
    if img_size:
        scale = float(img_size) / max(img.size)
        new_size = (int(np.ceil(scale * img.size[0])), int(np.ceil(scale * img.size[1])))
        img = img.resize(new_size, resample=Image.BILINEAR)
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img


# util function to convert a tensor into a valid image
datasets.py 文件源码 项目:DEC-keras 作者: XifengGuo 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def extract_vgg16_features(x):
    from keras.preprocessing.image import img_to_array, array_to_img
    from keras.applications.vgg16 import preprocess_input, VGG16
    from keras.models import Model

    # im_h = x.shape[1]
    im_h = 224
    model = VGG16(include_top=True, weights='imagenet', input_shape=(im_h, im_h, 3))
    # if flatten:
    #     add_layer = Flatten()
    # else:
    #     add_layer = GlobalMaxPool2D()
    # feature_model = Model(model.input, add_layer(model.output))
    feature_model = Model(model.input, model.get_layer('fc1').output)
    print('extracting features...')
    x = np.asarray([img_to_array(array_to_img(im, scale=False).resize((im_h,im_h))) for im in x])
    x = preprocess_input(x)  # data - 127. #data/255.#
    features = feature_model.predict(x)
    print('Features shape = ', features.shape)

    return features
deep-dream.py 文件源码 项目:Deep-Learning-with-Keras 作者: PacktPublishing 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def preprocess(img):
    img4d = img.copy()
    img4d = img4d.astype("float64")
    if K.image_dim_ordering() == "th":
        # (H, W, C) -> (C, H, W)
        img4d = img4d.transpose((2, 0, 1))
    img4d = np.expand_dims(img4d, axis=0)
    img4d = vgg16.preprocess_input(img4d)
    return img4d
style-transfer.py 文件源码 项目:Deep-Learning-with-Keras 作者: PacktPublishing 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def preprocess(img):
    img4d = img.copy()
    img4d = img4d.astype("float64")
    if K.image_dim_ordering() == "th":
        # (H, W, C) -> (C, H, W)
        img4d = img4d.transpose((2, 0, 1))
    img4d = np.expand_dims(img4d, axis=0)
    img4d = vgg16.preprocess_input(img4d)
    return img4d
precomputeVGG16.py 文件源码 项目:gcnet 作者: chcaru 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def preprocessImage(imagePath):
    img = load_img(imagePath, target_size=(244, 244))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    img = img.reshape(img.shape[1:])
    return img
blendi.py 文件源码 项目:Blendi-Py 作者: rohanrc1997 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(im_height, im_width))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img
application.py 文件源码 项目:visimil 作者: rene4jazz 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def get_features(url):
    response = requests.get(url)
    img = Image.open(BytesIO(response.content)).convert('RGB')

    target_size = (224, 224)
    model = VGG16(weights='imagenet', include_top=False, pooling='avg')

    if img.size != target_size:
        img = img.resize(target_size)

    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    features = model.predict(x).flatten()
    return features.tolist()
neural_style_transfer.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_nrows, img_ncols))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img

# util function to convert a tensor into a valid image
deep_dream.py 文件源码 项目:keras 作者: GeekLiB 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_width, img_height))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img

# util function to convert a tensor into a valid image
neural_style_transfer.py 文件源码 项目:pCVR 作者: xjtushilei 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_nrows, img_ncols))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img

# util function to convert a tensor into a valid image
utils.py 文件源码 项目:neural-style-keras 作者: robertomest 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def preprocess_input(x):
    return vgg16.preprocess_input(x.astype('float32'))
neural_style_transfer.py 文件源码 项目:yupgi_alert0 作者: forcecore 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_nrows, img_ncols))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img

# util function to convert a tensor into a valid image
vgg16_worker.py 文件源码 项目:tdesc 作者: bkj 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def import_vgg16():
    global VGG16
    global Model
    global image
    global preprocess_input
    global K
    from keras.applications import VGG16
    from keras.models import Model
    from keras.preprocessing import image
    from keras.applications.vgg16 import preprocess_input

    from keras import backend as K
    if K.backend() == 'tensorflow':
        limit_mem()
vgg16_worker.py 文件源码 项目:tdesc 作者: bkj 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def imread(self, path):
        if 'http' == path[:4]:
            with contextlib.closing(urllib.urlopen(path)) as req:
                local_url = cStringIO.StringIO(req.read())
            img = image.load_img(local_url, target_size=(self.target_dim, self.target_dim))
        else:
            img = image.load_img(path, target_size=(self.target_dim, self.target_dim))

        img = image.img_to_array(img)
        img = np.expand_dims(img, axis=0)
        img = preprocess_input(img)
        return img
improved_neural_doodle.py 文件源码 项目:Neural-Style-Transfer-Windows 作者: titu1994 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_nrows, img_ncols))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img
neural_doodle.py 文件源码 项目:Neural-Style-Transfer-Windows 作者: titu1994 项目源码 文件源码 阅读 263 收藏 0 点赞 0 评论 0
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_nrows, img_ncols))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img
visualization.py 文件源码 项目:Aesthetic_attributes_maps 作者: gautamMalu 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def load_image(path):
    img_path = path
    img = load_img(img_path, target_size=(299, 299))
    x = img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    return x
preprocess.py 文件源码 项目:FCN_via_keras 作者: k3nt0w 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def load_data(path, size=224, mode=None):
    img = Image.open(path)
    w,h = img.size
    if w < h:
        if w < size:
            img = img.resize((size, size*h//w))
            w, h = img.size
    else:
        if h < size:
            img = img.resize((size*w//h, size))
            w, h = img.size
    img = img.crop((int((w-size)*0.5), int((h-size)*0.5), int((w+size)*0.5), int((h+size)*0.5)))
    if mode=="original":
        return img

    if mode=="label":
        y = np.array(img, dtype=np.int32)
        mask = y == 255
        y[mask] = 0
        y = binarylab(y, size, 21)
        y = np.expand_dims(y, axis=0)
        return y
    if mode=="data":
        X = image.img_to_array(img)
        X = np.expand_dims(X, axis=0)
        X = preprocess_input(X)
        return X
utils.py 文件源码 项目:style-transfer 作者: kevinzakka 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def preprocess_image(image_path, desired_dims):
    img = load_img(image_path, target_size=desired_dims)
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img

# util function to convert a tensor into a valid image
neural_style_transfer.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_nrows, img_ncols))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img

# util function to convert a tensor into a valid image
deep_dream.py 文件源码 项目:keras-customized 作者: ambrite 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_width, img_height))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img

# util function to convert a tensor into a valid image
extract_cnn_vgg16_keras.py 文件源码 项目:flask-keras-cnn-image-retrieval 作者: willard-yuan 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def extract_feat(img_path):
    # weights: 'imagenet'
    # pooling: 'max' or 'avg'
    # input_shape: (width, height, 3), width and height should >= 48

    input_shape = (224, 224, 3)
    model = VGG16(weights = 'imagenet', input_shape = (input_shape[0], input_shape[1], input_shape[2]), pooling = 'max', include_top = False)

    img = image.load_img(img_path, target_size=(input_shape[0], input_shape[1]))
    img = image.img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = preprocess_input(img)
    feat = model.predict(img)
    norm_feat = feat[0]/LA.norm(feat[0])
    return norm_feat
question_answer.py 文件源码 项目:NeuralNetwork-ImageQA 作者: ayushoriginal 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def extract_image_features(img_path):
    model = models.VGG_16('weights/vgg16_weights.h5')
    img = image.load_img(img_path,target_size=(224,224))
    x = image.img_to_array(img)
    x = np.expand_dims(x,axis=0)
    x = preprocess_input(x)
    last_layer_output = K.function([model.layers[0].input,K.learning_phase()],
        [model.layers[-1].input])
    features = last_layer_output([x,0])[0]
    return features
neural_style_transfer.py 文件源码 项目:keras 作者: NVIDIA 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_nrows, img_ncols))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img

# util function to convert a tensor into a valid image
deep_dream.py 文件源码 项目:keras 作者: NVIDIA 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def preprocess_image(image_path):
    img = load_img(image_path, target_size=(img_height, img_width))
    img = img_to_array(img)
    img = np.expand_dims(img, axis=0)
    img = vgg16.preprocess_input(img)
    return img

# util function to convert a tensor into a valid image
deep-dream.py 文件源码 项目:deeplearning_keras 作者: gazzola 项目源码 文件源码 阅读 38 收藏 0 点赞 0 评论 0
def preprocess(img):
    img4d = img.copy()
    img4d = img4d.astype("float64")
    if K.image_dim_ordering() == "th":
        # (H, W, C) -> (C, H, W)
        img4d = img4d.transpose((2, 0, 1))
    img4d = np.expand_dims(img4d, axis=0)
    img4d = vgg16.preprocess_input(img4d)
    return img4d
style-transfer.py 文件源码 项目:deeplearning_keras 作者: gazzola 项目源码 文件源码 阅读 28 收藏 0 点赞 0 评论 0
def preprocess(img):
    img4d = img.copy()
    img4d = img4d.astype("float64")
    if K.image_dim_ordering() == "th":
        # (H, W, C) -> (C, H, W)
        img4d = img4d.transpose((2, 0, 1))
    img4d = np.expand_dims(img4d, axis=0)
    img4d = vgg16.preprocess_input(img4d)
    return img4d
preprocess.py 文件源码 项目:cs224n_prj 作者: lps-stanf 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def preprocess_image(filename, target_size):
    img = image.load_img(filename, target_size=target_size)
    x = image.img_to_array(img)
    x = np.expand_dims(x, axis=0)
    x = preprocess_input(x)
    x = np.squeeze(x)
    return x
statusSever_socket.py 文件源码 项目:VGG 作者: jackfan00 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def drawbbox(self, img, xx, testmodel, confid_thresh, w, h, c):
    ttimg, x0_list, y0_list, x1_list, y1_list, classprob_list, class_id_list, confid_value_list = utils.predict(preprocess_input(np.asarray([xx])), testmodel, confid_thresh,w,h,c)
    for x0,y0,x1,y1,classprob,class_id,confid_value in zip(x0_list, y0_list, x1_list, y1_list, classprob_list, class_id_list, confid_value_list):
        # draw bounding box
        cv2.rectangle(img, (x0, y0), (x1, y1), (255,255,255), 2)
        # draw classimg
        classimg = cv2.imread(cfgconst.label_names[class_id])
                if y0-classimg.shape[0] <= 0:
            yst =0
                        yend =classimg.shape[0]
                elif y0 >= img.shape[0]:
                        yst = img.shape[0]-classimg.shape[0]-1
                        yend = img.shape[0]-1
                else:
                        yst = y0 - classimg.shape[0]
                        yend = y0

                if x0+classimg.shape[1] >= img.shape[1]:
                        xst = img.shape[1]-classimg.shape[1]-1
                        xend = img.shape[1]-1
                elif x0 <=0:
                        xst = 0
                        xend = classimg.shape[1]
                else:
                        xst = x0
                        xend = x0+classimg.shape[1]

                #

                img[yst:yend, xst:xend] = classimg
                # draw text
                font = cv2.FONT_HERSHEY_SIMPLEX
                cv2.putText(img, str(classprob), (x0,y0+classimg.shape[0]-1), font, 0.5,(255,255,255),2,cv2.LINE_AA)
                cv2.putText(img, str(confid_value), (x0,y1), font, 0.5,(128,255,255),1,cv2.LINE_AA)
                #
    cv2.imshow('frame',img)
    cv2.waitKey(1)


问题


面经


文章

微信
公众号

扫码关注公众号