def build(self, input_shape=None, num_outputs=1000):
"""
Args:
input_shape: The input shape in the form (nb_rows, nb_cols, nb_channels) TensorFlow Format!!
num_outputs: The number of outputs at final softmax layer
Returns:
A compile Keras model.
"""
if len(input_shape) != 3:
raise Exception("Input shape should be a tuple like (nb_rows, nb_cols, nb_channels)")
# (227, 227, 3)
input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=197,
data_format=K.image_data_format(), include_top=True)
img_input = Input(shape=input_shape)
# x = ZeroPadding2D((3, 3))(img_input)
x = Conv2D(96, (11, 11), strides=(4, 4), name='conv1')(img_input)
# (55, 55, 96)
x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool1')(x)
# (27, 27, 96)
x = BatchNormalization(axis=3, name='bn_conv1')(x)
x = Conv2D(256, (5, 5), strides=(4, 4), name='conv2')(x)
x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool2')(x)
x = BatchNormalization(axis=3, name='bn_conv2')(x)
x = Conv2D(384, (3, 3), strides=(1, 1), padding=1, name='conv3')(x)
x = Conv2D(384, (3, 3), strides=(1, 1), padding=1, name='conv4')(x)
x = Conv2D(256, (3, 3), strides=(1, 1), padding=1, name='conv5')(x)
x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool3')(x)
x = Dense(units=4096)(x)
x = Dense(units=4096)(x)
x = Dense(units=num_outputs)(x)
x = Activation('softmax')(x)
self.model = Model(inputs=img_input, outputs=x, name='AlexNet Model')
return self.model
python类_obtain_input_shape()的实例源码
def build(self, input_shape=None, num_outputs=1000):
"""
Args:
input_shape: The input shape in the form (nb_rows, nb_cols, nb_channels) TensorFlow Format!!
num_outputs: The number of outputs at final softmax layer
Returns:
A compile Keras model.
"""
if len(input_shape) != 3:
raise Exception("Input shape should be a tuple like (nb_rows, nb_cols, nb_channels)")
# (227, 227, 3)
input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=197,
data_format=K.image_data_format(), include_top=True)
img_input = Input(shape=input_shape)
# x = ZeroPadding2D((3, 3))(img_input)
x = Conv2D(96, (7, 7), strides=(2, 2), name='conv1')(img_input)
# (55, 55, 96)
x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool1')(x)
# (27, 27, 96)
x = BatchNormalization(axis=3, name='bn_conv1')(x)
x = Conv2D(256, (5, 5), strides=(4, 4), name='conv2')(x)
x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool2')(x)
x = BatchNormalization(axis=3, name='bn_conv2')(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding=1, name='conv3')(x)
x = Conv2D(1024, (3, 3), strides=(1, 1), padding=1, name='conv4')(x)
x = Conv2D(512, (3, 3), strides=(1, 1), padding=1, name='conv5')(x)
x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool3')(x)
x = Dense(units=4096)(x)
x = Dense(units=4096)(x)
x = Dense(units=num_outputs)(x)
x = Activation('softmax')(x)
self.model = Model(inputs=img_input, outputs=x, name='ZFNet Model')
return self.model
def DenseNet_FCN(input_shape=None, weight_decay=1E-4,
batch_momentum=0.9, batch_shape=None, classes=21,
include_top=False, activation='sigmoid'):
if include_top is True:
# TODO(ahundt) Softmax is pre-applied, so need different train, inference, evaluate.
# TODO(ahundt) for multi-label try per class sigmoid top as follows:
# x = Reshape((row * col * classes))(x)
# x = Activation('sigmoid')(x)
# x = Reshape((row, col, classes))(x)
return densenet.DenseNetFCN(input_shape=input_shape,
weights=None, classes=classes,
nb_layers_per_block=[4, 5, 7, 10, 12, 15],
growth_rate=16,
dropout_rate=0.2)
# if batch_shape:
# img_input = Input(batch_shape=batch_shape)
# image_size = batch_shape[1:3]
# else:
# img_input = Input(shape=input_shape)
# image_size = input_shape[0:2]
input_shape = _obtain_input_shape(input_shape,
default_size=32,
min_size=16,
data_format=K.image_data_format(),
include_top=False)
img_input = Input(shape=input_shape)
x = densenet.__create_fcn_dense_net(classes, img_input,
input_shape=input_shape,
nb_layers_per_block=[4, 5, 7, 10, 12, 15],
growth_rate=16,
dropout_rate=0.2,
include_top=include_top)
x = top(x, input_shape, classes, activation, weight_decay)
# TODO(ahundt) add weight loading
model = Model(img_input, x, name='DenseNet_FCN')
return model
def densenet_cifar10_model(logits=False, input_range_type=1, pre_filter=lambda x:x):
assert input_range_type == 1
batch_size = 64
nb_classes = 10
img_rows, img_cols = 32, 32
img_channels = 3
img_dim = (img_channels, img_rows, img_cols) if K.image_dim_ordering() == "th" else (img_rows, img_cols, img_channels)
depth = 40
nb_dense_block = 3
growth_rate = 12
nb_filter = 16
dropout_rate = 0.0 # 0.0 for data augmentation
input_tensor = None
include_top=True
if logits is True:
activation = None
else:
activation = "softmax"
# Determine proper input shape
input_shape = _obtain_input_shape(img_dim,
default_size=32,
min_size=8,
data_format=K.image_data_format(),
include_top=include_top)
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
x = __create_dense_net(nb_classes, img_input, True, depth, nb_dense_block,
growth_rate, nb_filter, -1, False, 0.0,
dropout_rate, 1E-4, activation)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = Model(inputs, x, name='densenet')
return model
# Source: https://github.com/titu1994/DenseNet
def build_resnet(self, input_shape=None, num_outputs=1000, layers=None, weights_path=None):
"""
Args:
input_shape: The input shape in the form (nb_rows, nb_cols, nb_channels) TensorFlow Format!!
num_outputs: The number of outputs at final softmax layer
layers: Number of layers for every network 50, 101, 152
weights_path: URL to the weights of a pre-trained model.
optimizer: An optimizer to compile the model, if None sgd+momentum by default.
Returns:
A compile Keras model.
"""
if len(input_shape) != 3:
raise Exception("Input shape should be a tuple like (nb_rows, nb_cols, nb_channels)")
input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=197,
data_format=K.image_data_format(), include_top=True)
img_input = Input(shape=input_shape)
x = ZeroPadding2D((3, 3))(img_input)
x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
x = BatchNormalization(axis=3, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool1')(x)
nb_filters = 64
stage = 2
for e in layers:
for i in range(e):
if i == 0:
x = block_with_shortcut(x, nb_filters, stage=stage, block='a', strides=2 if stage >= 3 else 1)
else:
x = block_without_shortcut(x, nb_filters, stage=stage, block='b', index=i)
stage += 1
nb_filters *= 2
x = AveragePooling2D((7, 7), strides=(1, 1), name='avg_pool')(x)
x = Flatten()(x)
x = Dense(units=num_outputs, activation='softmax', name='fc1000')(x)
self.model = Model(inputs=img_input, outputs=x, name='ResNet Model')
if weights_path is not None:
model.load_weights(weights_path)
return self.model
def build(self, input_shape=None, num_outputs=1000):
"""
Args:
input_shape: The input shape in the form (nb_rows, nb_cols, nb_channels) TensorFlow Format!!
num_outputs: The number of outputs at final softmax layer
Returns:
A compile Keras model.
"""
if len(input_shape) != 3:
raise Exception("Input shape should be a tuple like (nb_rows, nb_cols, nb_channels)")
# (224, 224, 3)
input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=197,
data_format=K.image_data_format(), include_top=True)
img_input = Input(shape=input_shape)
# x = ZeroPadding2D((3, 3))(img_input)
x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(img_input)
# (122, 122, 64)
x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool1')(x)
# (56, 56, 64)
x = Conv2D(192, (3, 3), strides=(1, 1), name='conv2')(x)
# (56, 56, 192)
x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool2')(x)
# (28, 28, 192)
# * Inception 3a filters=256
# * Inception 3b filters=480
x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool3')(x)
# (14, 14, 480)
# * Inception 4a filters=512
# * Inception 4b filters=512
# * Inception 4c filters=512
# * Inception 4d filters=528
# * Inception 4e filters=832
x = MaxPool2D(pool_size=(3, 3), strides=(2, 2), padding='same', name='pool4')(x)
# (7, 7, 832)
# * Inception 5a filters=832
# * Inception 5b filters=1024
x = AveragePooling2D(pool_size=(7, 7), strides=(1, 1), padding='same', name='pool5')(x)
# (1, 1, 1024)
x = Dropout(0.4)(x)
x = Dense(units=num_outputs)(x)
x = Activation('softmax')(x)
self.model = Model(inputs=img_input, outputs=x, name='GoogLeNet Model')
return self.model
def build(self, input_shape=None, num_outputs=1000):
"""
Args:
input_shape: The input shape in the form (nb_rows, nb_cols, nb_channels) TensorFlow Format!!
num_outputs: The number of outputs at final softmax layer
Returns:
A compile Keras model.
"""
if len(input_shape) != 3:
raise Exception("Input shape should be a tuple like (nb_rows, nb_cols, nb_channels)")
input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=197,
data_format=K.image_data_format(), include_top=True)
img_input = Input(shape=input_shape)
# x = ZeroPadding2D((3, 3))(img_input)
x = Conv2D(32, (3, 3), strides=(2, 2), name='conv1')(img_input)
x = BatchNormalization(axis=3, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool1')(x)
x = Conv2D(64, (3, 3), strides=(2, 2), name='conv2')(x)
x = BatchNormalization(axis=3, name='bn_conv2')(x)
x = Activation('relu')(x)
x = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool2')(x)
x = Conv2D(128, (3, 3), strides=(2, 2), name='conv3')(x)
x = Conv2D(64, (1, 1), strides=(2, 2), name='conv4')(x)
x = Conv2D(128, (3, 3), strides=(2, 2), name='conv5')(x)
x = BatchNormalization(axis=3, name='bn_conv3')(x)
x = Activation('relu')(x)
x = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool3')(x)
x = Conv2D(256, (3, 3), strides=(2, 2), name='conv6')(x)
x = Conv2D(128, (1, 1), strides=(2, 2), name='conv7')(x)
x = Conv2D(256, (3, 3), strides=(2, 2), name='conv8')(x)
x = BatchNormalization(axis=3, name='bn_conv4')(x)
x = Activation('relu')(x)
x = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool4')(x)
x = Conv2D(512, (3, 3), strides=(2, 2), name='conv9')(x)
x = Conv2D(256, (1, 1), strides=(2, 2), name='conv10')(x)
x = Conv2D(512, (3, 3), strides=(2, 2), name='conv11')(x)
x = Conv2D(256, (1, 1), strides=(2, 2), name='conv12')(x)
x = Conv2D(512, (3, 3), strides=(2, 2), name='conv13')(x)
x = BatchNormalization(axis=3, name='bn_conv5')(x)
x = Activation('relu')(x)
x = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool5')(x)
x = Conv2D(1024, (3, 3), strides=(2, 2), name='conv14')(x)
x = Conv2D(512, (1, 1), strides=(2, 2), name='conv15')(x)
x = Conv2D(1024, (3, 3), strides=(2, 2), name='conv16')(x)
x = Conv2D(512, (1, 1), strides=(2, 2), name='conv17')(x)
x = Conv2D(1024, (3, 3), strides=(2, 2), name='conv18')(x)
x = BatchNormalization(axis=3, name='bn_conv6')(x)
x = Activation('relu')(x)
x = Dense(units=num_outputs)(x)
x = AveragePooling2D((1, 1), strides=(1, 1), name='avg_pool')(x)
x = Activation('softmax')(x)
self.model = Model(inputs=img_input, outputs=x, name='DarkNet Model')
return self.model
def build(self, input_shape=None, num_outputs=1000):
"""
Args:
input_shape: The input shape in the form (nb_rows, nb_cols, nb_channels) TensorFlow Format!!
num_outputs: The number of outputs at final softmax layer
Returns:
A compile Keras model.
"""
if len(input_shape) != 3:
raise Exception("Input shape should be a tuple like (nb_rows, nb_cols, nb_channels)")
input_shape = _obtain_input_shape(input_shape, default_size=224, min_size=197,
data_format=K.image_data_format(), include_top=True)
img_input = Input(shape=input_shape)
# x = ZeroPadding2D((3, 3))(img_input)
x = Conv2D(64, (3, 3), strides=(2, 2), name='conv1')(img_input)
x = Conv2D(64, (3, 3), strides=(2, 2), name='conv2')(x)
x = BatchNormalization(axis=3, name='bn_conv1')(x)
x = Activation('relu')(x)
x = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool1')(x)
x = Conv2D(128, (3, 3), strides=(2, 2), name='conv3')(x)
x = Conv2D(128, (3, 3), strides=(2, 2), name='conv4')(x)
x = BatchNormalization(axis=3, name='bn_conv2')(x)
x = Activation('relu')(x)
x = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool2')(x)
x = Conv2D(256, (3, 3), strides=(2, 2), name='conv5')(x)
x = Conv2D(256, (3, 3), strides=(2, 2), name='conv6')(x)
x = BatchNormalization(axis=3, name='bn_conv3')(x)
x = Activation('relu')(x)
x = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool3')(x)
x = Conv2D(512, (3, 3), strides=(2, 2), name='conv7')(x)
x = Conv2D(512, (3, 3), strides=(2, 2), name='conv8')(x)
x = BatchNormalization(axis=3, name='bn_conv4')(x)
x = Activation('relu')(x)
x = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool4')(x)
x = Conv2D(512, (3, 3), strides=(2, 2), name='conv9')(x)
x = Conv2D(512, (3, 3), strides=(2, 2), name='conv10')(x)
x = BatchNormalization(axis=3, name='bn_conv5')(x)
x = Activation('relu')(x)
x = MaxPool2D(pool_size=(2, 2), strides=(2, 2), padding='same', name='pool5')(x)
x = Dense(units=4096)(x)
x = Dense(units=4096)(x)
x = Dense(units=num_outputs)(x)
x = Activation('softmax')(x)
self.model = Model(inputs=img_input, outputs=x, name='ImageNet Model')
return self.model
def Atrous_DenseNet(input_shape=None, weight_decay=1E-4,
batch_momentum=0.9, batch_shape=None, classes=21,
include_top=False, activation='sigmoid'):
# TODO(ahundt) pass the parameters but use defaults for now
if include_top is True:
# TODO(ahundt) Softmax is pre-applied, so need different train, inference, evaluate.
# TODO(ahundt) for multi-label try per class sigmoid top as follows:
# x = Reshape((row * col * classes))(x)
# x = Activation('sigmoid')(x)
# x = Reshape((row, col, classes))(x)
return densenet.DenseNet(depth=None, nb_dense_block=3, growth_rate=32,
nb_filter=-1, nb_layers_per_block=[6, 12, 24, 16],
bottleneck=True, reduction=0.5, dropout_rate=0.2,
weight_decay=1E-4,
include_top=True, top='segmentation',
weights=None, input_tensor=None,
input_shape=input_shape,
classes=classes, transition_dilation_rate=2,
transition_kernel_size=(1, 1),
transition_pooling=None)
# if batch_shape:
# img_input = Input(batch_shape=batch_shape)
# image_size = batch_shape[1:3]
# else:
# img_input = Input(shape=input_shape)
# image_size = input_shape[0:2]
input_shape = _obtain_input_shape(input_shape,
default_size=32,
min_size=16,
data_format=K.image_data_format(),
include_top=False)
img_input = Input(shape=input_shape)
x = densenet.__create_dense_net(classes, img_input,
depth=None, nb_dense_block=3, growth_rate=32,
nb_filter=-1, nb_layers_per_block=[6, 12, 24, 16],
bottleneck=True, reduction=0.5, dropout_rate=0.2,
weight_decay=1E-4, top='segmentation',
input_shape=input_shape,
transition_dilation_rate=2,
transition_kernel_size=(1, 1),
transition_pooling=None,
include_top=include_top)
x = top(x, input_shape, classes, activation, weight_decay)
model = Model(img_input, x, name='Atrous_DenseNet')
# TODO(ahundt) add weight loading
return model