python类get()的实例源码

custom_layer_activation.py 文件源码 项目:minos 作者: guybedo 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def search_model(experiment_label, steps, batch_size=32):
    """ This is where we put everythin together.
    We get the dataset, build the Training and Experiment objects, and run the experiment.
    The experiments logs are generated in ~/minos/experiment_label
    We use the CpuEnvironment to have the experiment run on the cpu, with 2 parralel processes.
    We could use GpuEnvironment to use GPUs, and specify which GPUs to use, and how many tasks
    per GPU
    """
    batch_iterator, test_batch_iterator, nb_classes = get_reuters_dataset(batch_size, max_words)
    layout = build_layout(max_words, nb_classes)
    training = Training(
        Objective('categorical_crossentropy'),
        Optimizer(optimizer='Adam'),
        Metric('categorical_accuracy'),
        epoch_stopping_condition(),
        batch_size)
    parameters = custom_experiment_parameters()
    experiment = Experiment(
        experiment_label,
        layout,
        training,
        batch_iterator,
        test_batch_iterator,
        CpuEnvironment(n_jobs=1),
        parameters=parameters)
    run_ga_search_experiment(
        experiment,
        population_size=100,
        generations=steps,
        resume=False,
        log_level='DEBUG')
fixtures.py 文件源码 项目:minos 作者: guybedo 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def call(self, x, mask=None):
        activation = activations.get(self.activation)
        return activation(backend.dot(x, self.W) + self.b)
dense_tensor.py 文件源码 项目:dense_tensor 作者: bstriner 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, units,
                 activation='linear',
                 weights=None,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=None,
                 bias_initializer='uniform',
                 bias_regularizer=None,
                 bias_constraint=None,
                 activity_regularizer=None,
                 bias=True,
                 input_dim=None,
                 factorization=simple_tensor_factorization(),
                 **kwargs):
        self.activation = activations.get(activation)
        self.units = units
        self.input_dim = input_dim
        self.factorization = factorization

        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.kernel_initializer = get_initializer(kernel_initializer)
        self.bias_initializer = get_initializer(bias_initializer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=2)]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(DenseTensor, self).__init__(**kwargs)
ntn.py 文件源码 项目:DeepLearn 作者: GauravBh1010tt 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self,inp_size,out_size,activation='tanh', **kwargs):
        super(ntn_layer, self).__init__(**kwargs)
        self.k = out_size
        self.d = inp_size
        self.activation = activations.get(activation)
        self.test_out = 0
convolutional.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, filters_simple, filters_complex, nb_row, nb_col,
                 init='glorot_uniform', activation='relu', weights=None,
                 padding='valid', strides=(1, 1), data_format=K.image_data_format(),
                 kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
                 W_constraint=None, bias_constraint=None,
                 bias=True, **kwargs):

        if padding not in {'valid', 'same'}:
            raise Exception('Invalid border mode for Convolution2DEnergy:', padding)
        self.filters_simple = filters_simple
        self.filters_complex = filters_complex
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.init = initializers.get(init, data_format=data_format)
        self.activation = activations.get(activation)
        assert padding in {'valid', 'same'}, 'padding must be in {valid, same}'
        self.padding = padding
        self.strides = tuple(strides)
        assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {tf, th}'
        self.data_format = data_format

        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.UnitNormOrthogonal(filters_complex, data_format)
        self.bias_constraint = constraints.get(bias_constraint)

        self.bias = bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights
        super(Convolution2DEnergy, self).__init__(**kwargs)
convolutional.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 45 收藏 0 点赞 0 评论 0
def __init__(self, rank,
                 kernel_size=3,
                 data_format=None,
                 kernel_initialization=.1,
                 bias_initialization=1,
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        super(_ConvGDN, self).__init__(**kwargs)
        self.rank = rank
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size')
        self.strides = conv_utils.normalize_tuple(1, rank, 'strides')
        self.padding = conv_utils.normalize_padding('same')
        self.data_format = conv_utils.normalize_data_format(data_format)
        self.dilation_rate = conv_utils.normalize_tuple(1, rank, 'dilation_rate')
        self.kernel_initializer = initializers.Constant(kernel_initialization)
        self.bias_initializer = initializers.Constant(bias_initialization)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.input_spec = InputSpec(ndim=self.rank + 2)
convolutional.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, filters,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=kconstraints.NonNeg(),
                 k_initializer='zeros',
                 k_regularizer=None,
                 k_constraint=None,
                 tied_k=False,
                 activity_regularizer=None,
                 strides=1,
                 padding='valid',
                 dilation_rate=1,
                 data_format=K.image_data_format(),
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(Conv2DSoftMinMax, self).__init__(**kwargs)

        self.filters = filters
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.k_initializer = initializers.get(k_initializer)
        self.k_regularizer = regularizers.get(k_regularizer)
        self.k_constraint = constraints.get(k_constraint)
        self.tied_k = tied_k
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.strides = conv_utils.normalize_tuple(strides, 2, 'strides')
        self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, 2, 'dilation_rate')
        self.padding = conv_utils.normalize_padding(padding)
        self.input_spec = InputSpec(min_ndim=2)
        self.data_format = data_format
        self.supports_masking = True
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, weights=None, kernel_initializer='glorot_uniform',
                 alpha_initializer='ones', alpha_regularizer=None, alpha_constraint=None,
                 beta_delta_initializer='ones', beta_delta_regularizer=None, beta_delta_constraint=None,
                 gamma_eta_initializer='ones', gamma_eta_regularizer=None, gamma_eta_constraint=None,
                 rho_initializer='ones', rho_regularizer=None, rho_constraint=None,
                 **kwargs):

        self.alpha_initializer = initializers.get(alpha_initializer)
        self.beta_delta_initializer = initializers.get(beta_delta_initializer)
        self.gamma_eta_initializer = initializers.get(gamma_eta_initializer)
        self.rho_initializer = initializers.get(rho_initializer)

        self.alpha_constraint = constraints.get(alpha_constraint)
        self.beta_delta_constraint = constraints.get(beta_delta_constraint)
        self.gamma_eta_constraint = constraints.get(gamma_eta_constraint)
        self.rho_constraint = constraints.get(rho_constraint)

        self.alpha_regularizer = regularizers.get(alpha_regularizer)
        self.beta_delta_regularizer = regularizers.get(beta_delta_regularizer)
        self.gamma_eta_regularizer = regularizers.get(gamma_eta_regularizer)
        self.rho_regularizer = regularizers.get(rho_regularizer)

        self.input_spec = [InputSpec(ndim=2)]

        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(NakaRushton, self).__init__(**kwargs)
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, filters,
                 sum_axes,
                 filter_axes,
                 activation=None,
                 use_bias=True,
                 kernel_initializer='glorot_uniform',
                 bias_initializer='zeros',
                 kernel_activation=None,
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(FilterDims, self).__init__(**kwargs)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.activation = activations.get(activation)
        self.kernel_activation = activations.get(kernel_activation)
        self.filters = filters
        self.sum_axes = list(sum_axes)
        self.sum_axes.sort()
        self.filter_axes = list(filter_axes)
        self.filter_axes.sort()
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.use_bias = use_bias
        self.input_spec = InputSpec(min_ndim=2)
        self.supports_masking = True
keras_extensions.py 文件源码 项目:sciDT 作者: edvisees 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, output_dim,
                 init='glorot_uniform', activation='linear', weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 input_dim=None, input_length1=None, input_length2=None, **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.activation = activations.get(activation)

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)
        self.constraints = [self.W_constraint, self.b_constraint]

        self.initial_weights = weights

        self.input_dim = input_dim
        self.input_length1 = input_length1
        self.input_length2 = input_length2
        if self.input_dim:
            kwargs['input_shape'] = (self.input_length1, self.input_length2, self.input_dim)
        self.input = K.placeholder(ndim=4)
        super(HigherOrderTimeDistributedDense, self).__init__(**kwargs)
attention.py 文件源码 项目:sciDT 作者: edvisees 项目源码 文件源码 阅读 16 收藏 0 点赞 0 评论 0
def __init__(self, input_shape, context='word', init='glorot_uniform', activation='tanh', weights=None, **kwargs):
    self.init = initializations.get(init)
    self.activation = activations.get(activation)
    self.context = context
    self.td1, self.td2, self.wd = input_shape
    self.initial_weights = weights
    kwargs['input_shape'] = input_shape
    super(TensorAttention, self).__init__(**kwargs)
clasrel_layers.py 文件源码 项目:Hotpot 作者: Liang-Qiu 项目源码 文件源码 阅读 14 收藏 0 点赞 0 评论 0
def __init__(self, max_sentences, activation='linear', **kwargs):
        self.activation = activations.get(activation)
        self.max_sentences = max_sentences

        kwargs['input_shape'] = (self.max_sentences, 3)
        super(WeightedMean, self).__init__(**kwargs)
clasrel_layers.py 文件源码 项目:Hotpot 作者: Liang-Qiu 项目源码 文件源码 阅读 14 收藏 0 点赞 0 评论 0
def __init__(self, max_sentences, activation='linear', **kwargs):
        self.activation = activations.get(activation)
        self.max_sentences = max_sentences

        kwargs['input_shape'] = (self.max_sentences, 3)
        super(WeightedMean, self).__init__(**kwargs)
custom_recurrents.py 文件源码 项目:keras-attention 作者: datalogue 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def get_initial_state(self, inputs):
        print('inputs shape:', inputs.get_shape())

        # apply the matrix on the first time step to get the initial s0.
        s0 = activations.tanh(K.dot(inputs[:, 0], self.W_s))

        # from keras.layers.recurrent to initialize a vector of (batchsize,
        # output_dim)
        y0 = K.zeros_like(inputs)  # (samples, timesteps, input_dims)
        y0 = K.sum(y0, axis=(1, 2))  # (samples, )
        y0 = K.expand_dims(y0)  # (samples, 1)
        y0 = K.tile(y0, [1, self.output_dim])

        return [y0, s0]
ConvHighway.py 文件源码 项目:HighwayNetwork 作者: trangptm 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, nb_filter, nb_row, nb_col, transform_bias=-1,
                 init='glorot_uniform', activation='relu', weights=None,
                 border_mode='same', subsample=(1, 1), dim_ordering='th',
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, **kwargs):

        if border_mode not in {'valid', 'same'}:
            raise Exception('Invalid border mode for Convolution2D:', border_mode)
        self.nb_filter = nb_filter
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.transform_bias = transform_bias
        self.init = initializations.get(init, dim_ordering=dim_ordering)
        self.activation = activations.get(activation)
        assert border_mode in {'valid', 'same'}, 'border_mode must be in {valid, same}'
        self.border_mode = border_mode
        self.subsample = tuple(subsample)
        assert dim_ordering in {'tf', 'th'}, 'dim_ordering must be in {tf, th}'
        self.dim_ordering = dim_ordering

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights
        super(Conv2DHighway, self).__init__(**kwargs)
attention_layers.py 文件源码 项目:Keras_note 作者: LibCorner 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self,output_dim,att_dim,attn_activation='tanh',
                 attn_inner_activation='tanh',
                 single_attn=False,**kwargs):
        '''
            attention_vec: ???????attention????????????????attention??
            single_attention_param: ????t,??????????????attention?
        '''
        self.attn_activation=activations.get(attn_activation)
        self.attn_inner_activation=activations.get(attn_inner_activation)
        self.single_attention_param=single_attn
        self.input_spec=None
        self.att_dim=att_dim
        super(AttentionLSTM,self).__init__(output_dim,**kwargs)
ntm.py 文件源码 项目:ntm_keras 作者: flomlo 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, units, 
                        n_slots=50,
                        m_depth=20,
                        shift_range=3,
                        controller_model=None,
                        read_heads=1,
                        write_heads=1,
                        activation='sigmoid',
                        batch_size=777,                 
                        stateful=False,
                        **kwargs):
        self.output_dim = units
        self.units = units
        self.n_slots = n_slots
        self.m_depth = m_depth
        self.shift_range = shift_range
        self.controller = controller_model
        self.activation = get_activations(activation)
        self.read_heads = read_heads
        self.write_heads = write_heads
        self.batch_size = batch_size

#        self.return_sequence = True
        try:
            if controller.state.stateful:
                self.controller_with_state = True 
        except:
            self.controller_with_state = False


        self.controller_read_head_emitting_dim = _controller_read_head_emitting_dim(m_depth, shift_range)
        self.controller_write_head_emitting_dim = _controller_write_head_emitting_dim(m_depth, shift_range)

        super(NeuralTuringMachine, self).__init__(**kwargs)
recurrent_convolutional.py 文件源码 项目:keras-prednet 作者: kunimasa-kawasaki 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, nb_filter, nb_row, nb_col,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid', dim_ordering="tf",
                 border_mode="valid", sub_sample=(1, 1),
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.nb_filter = nb_filter
        self.nb_row = nb_row
        self.nb_col = nb_col
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.border_mode = border_mode
        self.subsample = sub_sample

        assert dim_ordering in {'tf', "th"}, 'dim_ordering must be in {tf,"th}'
        self.dim_ordering = dim_ordering

        kwargs["nb_filter"] = nb_filter
        kwargs["nb_row"] = nb_row
        kwargs["nb_col"] = nb_col
        kwargs["dim_ordering"] = dim_ordering

        self.W_regularizer = W_regularizer
        self.U_regularizer = U_regularizer
        self.b_regularizer = b_regularizer
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        super(LSTMConv2D, self).__init__(**kwargs)
projection.py 文件源码 项目:c2w2c 作者: milankinen 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, weights=None, activation='linear', return_mask=True, **kwargs):
    self.supports_masking = True
    self.output_dim       = output_dim
    self.init             = initializations.get('glorot_uniform')
    self.activation       = activations.get(activation)
    self.initial_weights  = weights
    self.return_mask      = return_mask
    super(Projection, self).__init__(**kwargs)
Networks.py 文件源码 项目:KerasCog 作者: ABAtanasov 项目源码 文件源码 阅读 25 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, 
                 init = 'glorot_uniform', inner_init = 'orthogonal',
                 activation = 'tanh', W_regularizer = None, 
                 U_regularizer = None, b_regularizer = None, 
                 dropout_W = 0.0, dropout_U = 0.0,
                 tau=100, dt=20, noise=.1,
                 dale_ratio = None, **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.activation = activations.get(activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U
        self.tau = tau
        self.dt = dt
        self.noise = noise
        self.dale_ratio = dale_ratio
        if dale_ratio:

            #make dales law matrix
            dale_vec = np.ones(output_dim)
            dale_vec[int(dale_ratio*output_dim):] = -1
            dale = np.diag(dale_vec)
            self.Dale = K.variable(dale)
        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(leak_recurrent, self).__init__(**kwargs)


问题


面经


文章

微信
公众号

扫码关注公众号