python类get()的实例源码

SparseFullyConnectedLayer.py 文件源码 项目:MatchZoo 作者: faneshion 项目源码 文件源码 阅读 26 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, init='glorot_uniform', activation='relu',weights=None,
            W_regularizer=None, b_regularizer=None, activity_regularizer=None,
            W_constraint=None, b_constraint=None, input_dim=None, **kwargs):
        self.W_initializer = initializers.get(init)
        self.b_initializer = initializers.get('zeros')
        self.activation = activations.get(activation)
        self.output_dim = output_dim
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)
        self.initial_weights = weights
        self.input_spec = InputSpec(ndim=2)

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(SparseFullyConnectedLayer, self).__init__(**kwargs)
itosfm.py 文件源码 项目:State-Frequency-Memory-stock-prediction 作者: z331565360 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, freq_dim, hidden_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.freq_dim = freq_dim
        self.hidden_dim = hidden_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(ITOSFM, self).__init__(**kwargs)
itosfm.py 文件源码 项目:State-Frequency-Memory-stock-prediction 作者: z331565360 项目源码 文件源码 阅读 30 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, freq_dim, hidden_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.freq_dim = freq_dim
        self.hidden_dim = hidden_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(ITOSFM, self).__init__(**kwargs)
lstm2ntm.py 文件源码 项目:NTM-Keras 作者: SigmaQuan 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, memory_dim=128, memory_size=20,
                 controller_output_dim=100, location_shift_range=1,
                 num_read_head=1, num_write_head=1,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, R_regularizer=None,
                 b_regularizer=None, W_y_regularizer=None,
                 W_xi_regularizer=None, W_r_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(NTM, self).__init__(**kwargs)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, filters,
                 centers_initializer='zeros',
                 centers_regularizer=None,
                 centers_constraint=None,
                 stds_initializer='ones',
                 stds_regularizer=None,
                 stds_constraint=None,
                 gauss_scale=100,
                 **kwargs):
        self.filters = filters
        self.gauss_scale = gauss_scale
        super(GaussianReceptiveFields, self).__init__(**kwargs)
        self.centers_initializer = initializers.get(centers_initializer)
        self.stds_initializer = initializers.get(stds_initializer)
        self.centers_regularizer = regularizers.get(centers_regularizer)
        self.stds_regularizer = regularizers.get(stds_regularizer)
        self.centers_constraint = constraints.get(centers_constraint)
        self.stds_constraint = constraints.get(stds_constraint)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 21 收藏 0 点赞 0 评论 0
def __init__(self, quadratic_filters=2, init='glorot_uniform', weights=None,
                 W_quad_regularizer=None, W_lin_regularizer=None, activity_regularizer=None,
                 W_quad_constraint=None, W_lin_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.quadratic_filters = quadratic_filters
        self.input_dim = input_dim

        self.W_quad_regularizer = regularizers.get(W_quad_regularizer)
        self.W_lin_regularizer = regularizers.get(W_lin_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_quad_constraint = constraints.get(W_quad_constraint)
        self.W_lin_constraint = constraints.get(W_lin_constraint)

        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=2)]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(GQM, self).__init__(**kwargs)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, activation='linear',
                 bias_regularizer=None,
                 bias_constraint=None,
                 bias_initializer='zeros',
                 use_bias=True, input_dim=None, **kwargs):

        self.activation = activations.get(activation)
        self.input_dim = input_dim

        self.bias_initializer = initializers.get(bias_initializer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.bias_constraint = constraints.get(bias_constraint)

        self.use_bias = use_bias
        self.input_spec = [InputSpec(ndim=2)]

        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(EminusS, self).__init__(**kwargs)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, quadratic_filters=2, init='glorot_uniform', weights=None,
                 W_quad_regularizer=None, W_lin_regularizer=None, activity_regularizer=None,
                 W_quad_constraint=None, W_lin_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.quadratic_filters = quadratic_filters
        self.input_dim = input_dim

        self.W_quad_regularizer = regularizers.get(W_quad_regularizer)
        self.W_lin_regularizer = regularizers.get(W_lin_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_quad_constraint = constraints.get(W_quad_constraint)
        self.W_lin_constraint = constraints.get(W_lin_constraint)

        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=5)]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(GQM_conv, self).__init__(**kwargs)
neuro.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, quadratic_filters=2, init='glorot_uniform', weights=None,
                 W_quad_regularizer=None, W_lin_regularizer=None, activity_regularizer=None,
                 W_quad_constraint=None, W_lin_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.quadratic_filters = quadratic_filters
        self.input_dim = input_dim

        self.W_quad_regularizer = regularizers.get(W_quad_regularizer)
        self.W_lin_regularizer = regularizers.get(W_lin_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_quad_constraint = constraints.get(W_quad_constraint)
        self.W_lin_constraint = constraints.get(W_lin_constraint)

        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=5)]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(GQM_4D, self).__init__(**kwargs)
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, units,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=constraints.NonNeg(),
                 k_initializer='zeros',
                 k_regularizer=None,
                 k_constraint=None,
                 tied_k=False,
                 activity_regularizer=None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(SoftMinMax, self).__init__(**kwargs)

        self.units = units
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.k_initializer = initializers.get(k_initializer)
        self.k_regularizer = regularizers.get(k_regularizer)
        self.k_constraint = constraints.get(k_constraint)
        self.tied_k = tied_k
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.input_spec = InputSpec(min_ndim=2)
        self.supports_masking = True
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, units,
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 kernel_constraint=constraints.NonNeg(),
                 activity_regularizer=None,
                 **kwargs):
        if 'input_shape' not in kwargs and 'input_dim' in kwargs:
            kwargs['input_shape'] = (kwargs.pop('input_dim'),)
        super(WeightedMean, self).__init__(**kwargs)

        self.units = units
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.input_spec = InputSpec(min_ndim=2)
        self.supports_masking = True
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, init='glorot_uniform',
                 activation=None, weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim='2+')]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(DenseNonNeg, self).__init__(**kwargs)
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, init='glorot_uniform',
                 activation=None, weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim='2+')]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(Feedback, self).__init__(**kwargs)
core.py 文件源码 项目:kfs 作者: the-moliver 项目源码 文件源码 阅读 23 收藏 0 点赞 0 评论 0
def __init__(self, init='glorot_uniform',
                 activation=None, weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.input_dim = input_dim

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim='2+')]

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(DivisiveNormalization, self).__init__(**kwargs)
GraphEmbedding.py 文件源码 项目:conv_qsar_fast 作者: connorcoley 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, inner_dim, depth = 2, init_output='uniform', 
            activation_output='softmax', init_inner='identity',
            activation_inner='linear', scale_output=0.01, padding=False, **kwargs):
        if depth < 1:
            quit('Cannot use GraphFP with depth zero')
        self.init_output = initializations.get(init_output)
        self.activation_output = activations.get(activation_output)
        self.init_inner = initializations.get(init_inner)
        self.activation_inner = activations.get(activation_inner)
        self.output_dim = output_dim
        self.inner_dim = inner_dim
        self.depth = depth
        self.scale_output = scale_output
        self.padding = padding

        self.initial_weights = None
        self.input_dim = 4 # each entry is a 3D N_atom x N_atom x N_feature tensor
        if self.input_dim:
            kwargs['input_shape'] = (None, None, None,) # 3D tensor for each input
        #self.input = K.placeholder(ndim = 4)
        super(GraphFP, self).__init__(**kwargs)
GraphEmbedding_sumAfter.py 文件源码 项目:conv_qsar_fast 作者: connorcoley 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, inner_dim, depth = 2, init_output='uniform', 
            activation_output='softmax', init_inner='identity',
            activation_inner='linear', scale_output=0.01, padding=False, **kwargs):
        if depth < 1:
            quit('Cannot use GraphFP with depth zero')
        self.init_output = initializations.get(init_output)
        self.activation_output = activations.get(activation_output)
        self.init_inner = initializations.get(init_inner)
        self.activation_inner = activations.get(activation_inner)
        self.output_dim = output_dim
        self.inner_dim = inner_dim
        self.depth = depth
        self.scale_output = scale_output
        self.padding = padding

        self.initial_weights = None
        self.input_dim = 4 # each entry is a 3D N_atom x N_atom x N_feature tensor
        if self.input_dim:
            kwargs['input_shape'] = (None, None, None,) # 3D tensor for each input
        #self.input = K.placeholder(ndim = 4)
        super(GraphFP, self).__init__(**kwargs)
memory_layers.py 文件源码 项目:Keras_note 作者: LibCorner 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self,output_dim,mem_vec_dim,init='glorot_uniform', activation='linear', weights=None,
                 activity_regularizer=None,input_dim=None, **kwargs):
        '''
        Params:
            output_dim: ?????
            mem_vec_dim: query?????

        '''
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim
        self.input_dim = input_dim
        self.mem_vector_dim=mem_vec_dim

        self.activity_regularizer = regularizers.get(activity_regularizer)


        self.initial_weights = weights

        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(MemoryNet,self).__init__(**kwargs)
rhn.py 文件源码 项目:deep-models 作者: LaurentMazare 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, L,
             init='glorot_uniform', inner_init='orthogonal',
             activation='tanh', inner_activation='hard_sigmoid',
             W_regularizer=None, U_regularizer=None, b_regularizer=None,
             dropout_W=0., dropout_U=0., **kwargs):
    self.output_dim = output_dim
    self.init = initializations.get(init)
    self.inner_init = initializations.get(inner_init)
    self.activation = activations.get(activation)
    self.inner_activation = activations.get(inner_activation)
    self.W_regularizer = regularizers.get(W_regularizer)
    self.U_regularizer = regularizers.get(U_regularizer)
    self.b_regularizer = regularizers.get(b_regularizer)
    self.dropout_W, self.dropout_U = dropout_W, dropout_U
    self.L = L

    if self.dropout_W or self.dropout_U:
        self.uses_learning_phase = True
    super(RHN, self).__init__(**kwargs)
eltwise_product.py 文件源码 项目:mlnet 作者: marcellacornia 项目源码 文件源码 阅读 18 收藏 0 点赞 0 评论 0
def __init__(self, downsampling_factor=10, init='glorot_uniform', activation='linear',
                 weights=None, W_regularizer=None, activity_regularizer=None,
                 W_constraint=None, input_dim=None, **kwargs):

        self.downsampling_factor = downsampling_factor
        self.init = initializations.get(init)
        self.activation = activations.get(activation)

        self.W_regularizer = regularizers.get(W_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.W_constraint = constraints.get(W_constraint)

        self.initial_weights = weights

        self.input_dim = input_dim
        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)

        self.input_spec = [InputSpec(ndim=4)]
        super(EltWiseProduct, self).__init__(**kwargs)
model_library.py 文件源码 项目:CIAN 作者: yanghanxy 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self,
                 W_regularizer=None, u_regularizer=None, b_regularizer=None,
                 W_constraint=None, u_constraint=None, b_constraint=None,
                 W_dropout=0., u_dropout=0., bias=True, **kwargs):

        self.supports_masking = True
        self.W_init = initializers.get('orthogonal')
        self.u_init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.u_regularizer = regularizers.get(u_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.u_constraint = constraints.get(u_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.W_dropout = min(1., max(0., W_dropout))
        self.u_dropout = min(1., max(0., u_dropout))

        self.bias = bias

        super(AttentionWithContext, self).__init__(**kwargs)
layer_normalization_RNN.py 文件源码 项目:New_Layers-Keras-Tensorflow 作者: WeidiXie 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 activation='tanh', beta_init='zero', gamma_init='one',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 gamma_regularizer=None, beta_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.activation = activations.get(activation)
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.beta_init = initializations.get(beta_init)
        self.gamma_init = initializations.get(gamma_init)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.dropout_W = dropout_W
        self.dropout_U = dropout_U
        self.epsilon = 1e-5
        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(LN_SimpleRNN, self).__init__(**kwargs)
LSTM.py 文件源码 项目:NeuralSentenceOrdering 作者: FudanNLP 项目源码 文件源码 阅读 27 收藏 0 点赞 0 评论 0
def __init__(self, input_dim, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid'):
        #self.input_dim = input_dim
        self.output_dim = int(output_dim / 2)
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)

        self.input_dim = input_dim
        #self.input = K.placeholder(input_shape)

        # initial states: 2 all-zero tensor of shape (output_dim)
        self.forward_lstm = LSTM(input_dim = input_dim, output_dim = self.output_dim)
        self.backward_lstm = LSTM(input_dim = input_dim, output_dim = self.output_dim)

        self.params = self.forward_lstm.params + self.backward_lstm.params

        #if self.initial_weights is not None:
        #    self.set_weights(self.initial_weights)
        #    del self.initial_weights
rtn.py 文件源码 项目:ikelos 作者: braingineer 项目源码 文件源码 阅读 22 收藏 0 点赞 0 评论 0
def __init__(self, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(DualCurrent, self).__init__(**kwargs)
rtn.py 文件源码 项目:ikelos 作者: braingineer 项目源码 文件源码 阅读 24 收藏 0 点赞 0 评论 0
def __init__(self, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 activation='tanh', inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 shape_key=None, dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U
        self.shape_key = shape_key or {}

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        kwargs['consume_less'] = 'gpu'
        super(RTTN, self).__init__(**kwargs)

        self.num_actions = 4
recurrent.py 文件源码 项目:keras_bn_library 作者: bnsnapper 项目源码 文件源码 阅读 31 收藏 0 点赞 0 评论 0
def __init__(self, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):

        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(DecoderVaeLSTM, self).__init__(**kwargs)
recurrent.py 文件源码 项目:keras_bn_library 作者: bnsnapper 项目源码 文件源码 阅读 20 收藏 0 点赞 0 评论 0
def __init__(self, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh', inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W = dropout_W
        self.dropout_U = dropout_U
        self.stateful = False

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(QRNN, self).__init__(**kwargs)
gcnn.py 文件源码 项目:nn_playground 作者: DingKe 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, output_dim, window_size=3, stride=1,
                 kernel_initializer='uniform', bias_initializer='zero',
                 activation='linear', activity_regularizer=None,
                 kernel_regularizer=None, bias_regularizer=None,
                 kernel_constraint=None, bias_constraint=None, 
                 use_bias=True, input_dim=None, input_length=None, **kwargs):
        self.output_dim = output_dim
        self.window_size = window_size
        self.strides = (stride, 1)

        self.use_bias = use_bias
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.activation = activations.get(activation)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        self.input_spec = [InputSpec(ndim=3)]
        self.input_dim = input_dim
        self.input_length = input_length
        if self.input_dim:
            kwargs['input_shape'] = (self.input_length, self.input_dim)
        super(GCNN, self).__init__(**kwargs)
qrnn.py 文件源码 项目:nn_playground 作者: DingKe 项目源码 文件源码 阅读 29 收藏 0 点赞 0 评论 0
def __init__(self, units, window_size=2, stride=1,
                 return_sequences=False, go_backwards=False, 
                 stateful=False, unroll=False, activation='tanh',
                 kernel_initializer='uniform', bias_initializer='zero',
                 kernel_regularizer=None, bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None, bias_constraint=None, 
                 dropout=0, use_bias=True, input_dim=None, input_length=None,
                 **kwargs):
        self.return_sequences = return_sequences
        self.go_backwards = go_backwards
        self.stateful = stateful
        self.unroll = unroll

        self.units = units 
        self.window_size = window_size
        self.strides = (stride, 1)

        self.use_bias = use_bias
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        self.dropout = dropout
        self.supports_masking = True
        self.input_spec = [InputSpec(ndim=3)]
        self.input_dim = input_dim
        self.input_length = input_length
        if self.input_dim:
            kwargs['input_shape'] = (self.input_length, self.input_dim)
        super(QRNN, self).__init__(**kwargs)
convolutional.py 文件源码 项目:keras-contrib 作者: farizrahman4u 项目源码 文件源码 阅读 19 收藏 0 点赞 0 评论 0
def __init__(self, filters, kernel_size,
                 kernel_initializer='glorot_uniform', activation=None, weights=None,
                 padding='valid', strides=(1, 1), data_format=None,
                 kernel_regularizer=None, bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None, bias_constraint=None,
                 use_bias=True, **kwargs):
        if data_format is None:
            data_format = K.image_data_format()
        if padding not in {'valid', 'same', 'full'}:
            raise ValueError('Invalid border mode for CosineConvolution2D:', padding)
        self.filters = filters
        self.kernel_size = kernel_size
        self.nb_row, self.nb_col = self.kernel_size
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.activation = activations.get(activation)
        self.padding = padding
        self.strides = tuple(strides)
        self.data_format = normalize_data_format(data_format)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        self.use_bias = use_bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights
        super(CosineConvolution2D, self).__init__(**kwargs)
custom_layer_activation.py 文件源码 项目:minos 作者: guybedo 项目源码 文件源码 阅读 17 收藏 0 点赞 0 评论 0
def __init__(self, output_dim=None, activation=None, **kwargs):
        self.output_dim = output_dim
        self.activation = activations.get(activation)
        super().__init__(**kwargs)


问题


面经


文章

微信
公众号

扫码关注公众号