def _load_experiments(self, data_folder, name_or_patterns):
if not isinstance(name_or_patterns, (list, tuple)):
name_or_patterns = [name_or_patterns]
files = []
for name_or_pattern in name_or_patterns:
matched_files = glob(
osp.join(data_folder, name_or_pattern)) # golb gives a list of all files satisfying pattern
files += matched_files # this will include twice the same file if it satisfies 2 patterns
experiments = []
progress_f = None
params_f = None
pkl_data = None
for f in files:
if os.path.isdir(f):
try:
progress = self._read_data(osp.join(f, "progress.csv"))
params = self._read_params(osp.join(f, "params.json"))
params["exp_name"] = osp.basename(f)
if os.path.isfile(osp.join(f, "params.pkl")):
pkl_data = joblib.load(osp.join(f, "params.pkl"))
experiments.append(Experiment(progress, params, pkl_data))
else:
experiments.append(Experiment(progress, params))
except Exception as e:
print(e)
elif 'progress.csv' in f: # in case you're giving as datafolder the dir that contains the files!
progress_f = self._read_data(f)
elif 'params.json' in f:
params_f = self._read_params(f)
elif 'params.pkl' in f:
print('about to load', f)
pkl_data = joblib.load(f)
if params_f and progress_f:
if pkl_data:
experiments.append(Experiment(progress_f, params_f, pkl_data))
else:
experiments.append(Experiment(progress_f, params_f))
self._experiments = experiments
python类load()的实例源码
def restore(self, checkpoint_dir=None):
if checkpoint_dir is None: checkpoint_dir = logger.get_snapshot_dir()
checkpoint_file = os.path.join(checkpoint_dir, 'params.chk')
if os.path.isfile(checkpoint_file + '.meta'):
sess = tf.get_default_session()
saver = tf.train.Saver()
saver.restore(sess, checkpoint_file)
tabular_chk_file = os.path.join(checkpoint_dir, 'progress.csv.chk')
if os.path.isfile(tabular_chk_file):
tabular_file = os.path.join(checkpoint_dir, 'progress.csv')
logger.remove_tabular_output(tabular_file)
shutil.copy(tabular_chk_file, tabular_file)
logger.add_tabular_output(tabular_file)
if self.qf is not None:
pool_file = os.path.join(checkpoint_dir, 'pool.chk')
if self.save_format == 'pickle':
pickle_load(pool_file)
elif self.save_format == 'joblib':
self.pool = joblib.load(pool_file)
else: raise NotImplementedError
logger.log('Restored from checkpoint %s'%checkpoint_file)
else:
logger.log('No checkpoint %s'%checkpoint_file)
def load_object(string):
# converts string to whatever was dumps'ed in it
return joblib.load(BytesIO(string))
def process_study(study_id, annotations, out_dir, nstack):
volumes_metadata = isotropic_volumes_metadata[study_id]
isometric_volume = np.load('../data_proc/stage1/isotropic_volumes_1mm/{}.npy'.format(study_id))
mean = np.mean(isometric_volume).astype(np.float32)
std = np.std(isometric_volume).astype(np.float32)
resize_factor = np.divide(volumes_metadata['volume_resampled_shape'], volumes_metadata['volume_shape'])
coords_list = []
for a in annotations:
d = a['data']
z = int(round(resize_factor[0] * a['sliceNum']))
y0 = resize_factor[1] * d['y']
y1 = resize_factor[1] * (d['y'] + d['height'])
x0 = resize_factor[2] * d['x']
x1 = resize_factor[2] * (d['x'] + d['width'])
coords_list.append((z, y0, y1, x0, x1))
samples = []
for coords in coords_list:
z, y0, y1, x0, x1 = coords
for i in range(40):
sample_id = uuid4()
rand_y0 = max(0, int(round(y0 - random.randint(0, 32))))
rand_y1 = min(isometric_volume.shape[1], int(round(y1 + random.randint(0, 32))))
rand_x0 = max(0, int(round(x0 - random.randint(0, 32))))
rand_x1 = min(isometric_volume.shape[2], int(round(x1 + random.randint(0, 32))))
patch = []
for zi in range(nstack):
patch.append(resize(isometric_volume[z+zi, rand_y0:rand_y1, rand_x0:rand_x1], [32, 32],
mode='edge', clip=True, preserve_range=True))
patch = np.array(patch, dtype=np.float32)
patch = (patch - mean) / (std + 1e-7)
patch = np.moveaxis(patch, 0, 2)
bb_x = (x0 - rand_x0) / (rand_x1 - rand_x0)
bb_y = (y0 - rand_y0) / (rand_y1 - rand_y0)
bb_w = (x1 - x0) / (rand_x1 - rand_x0)
bb_h = (y1 - y0) / (rand_y1 - rand_y0)
samples.append((patch, bb_x, bb_y, bb_w, bb_h))
joblib.dump(samples, os.path.join(out_dir, 'samples', '{}.pkl'.format(study_id)))
return len(samples)
def main():
# Get the data.
data_set = joblib.load("/mnt/guankai/CIKM/data/CIKM2017_train/train_Imp_3x3_resampled.pkl")
for i in range(10):
data_set = np.random.permutation(data_set)
valid_data_num = int(len(data_set) / 10) #get 10% data for validation
valid_set = data_set[0 : valid_data_num ]
train_set = data_set[valid_data_num : ]
convert_to(train_set, "train_Imp_3x3_resampled")
convert_to(valid_set, "valid_Imp_3x3_resampled")
return
def cvt(filename):
output = joblib.load(filename)
pred = output["output"]
outputdir = filename[:filename.rfind("/")+1] + "csvfile/"
if not os.path.isdir(outputdir):
os.mkdir(outputdir)
csvfile = outputdir + filename[filename.rfind("/"):filename.rfind(".")+1] + "csv"
out = np.array(pred).reshape(2000)
np.savetxt(fname=csvfile, X=out, fmt="%.3f",delimiter="")
def agg(file_name,store_file):
datas = joblib.load(file_name)
new_datas = []
for data in datas:
new_datas.append(data)
new_datas.append({"input":np.flip(data["input"],axis=2),"label":data["label"]})
new_datas.append({"input":np.flip(data["input"],axis=3),"label":data["label"]})
#new_datas.append({"input":np.rot90(m=data["input"],k=1,axes=(2,3)),"label":data["label"]})
#new_datas.append({"input":np.rot90(m=data["input"],k=2,axes=(2,3)),"label":data["label"]})
#new_datas.append({"input":np.rot90(m=data["input"],k=3,axes=(2,3)),"label":data["label"]})
joblib.dump(value=new_datas,filename=store_file,compress=3)
def slice_data(filename):
data = joblib.load(filename=filename)
for idx, i in enumerate(data):
data[idx]["input"] = np.delete(data[idx]["input"],[3],axis=1)
data[idx]["input"] = data[idx]["input"][:,:,46:55,46:55]
name, suf = os.path.splitext(filename)
outputfilename = name + "del_height_no.4_slice_7x7.pkl"
joblib.dump(value=data, filename=outputfilename)
classification_classifier_chain.py 文件源码
项目:Kaggle_the_Nature_Conservancy_Fisheries_Monitoring
作者: Sapphirine
项目源码
文件源码
阅读 17
收藏 0
点赞 0
评论 0
def binary_trans(trainy, testy, i):
y1 = trainy['image_path'].apply(lambda x: 1 if x == int(i) else 0).tolist()
y2 = testy['image_path'].apply(lambda x: 1 if x == int(i) else 0).tolist()
return(y1, y2)
# <=======================================================================================================>
# load the data
def load_object(string):
# converts string to whatever was dumps'ed in it
return joblib.load(BytesIO(string))
def load_data(fname):
obj = joblib.load(os.path.join('data', fname))
return obj
def test_pickle(self):
joblib.dump(CachedIterable(self.iterator(), 3), 'output')
self.assertListEqual(list(joblib.load('output')), list(range(20)))
model_cifar.py 文件源码
项目:deep_separation_contraction
作者: edouardoyallon
项目源码
文件源码
阅读 19
收藏 0
点赞 0
评论 0
def normalize_image(image):
meanstd = joblib.load(FLAGS.mean_std_path)
mean, std = meanstd['mean'], meanstd['std']
normed_image = (image - mean) / std
return normed_image
model_cifar_contract.py 文件源码
项目:deep_separation_contraction
作者: edouardoyallon
项目源码
文件源码
阅读 19
收藏 0
点赞 0
评论 0
def normalize_image(image):
meanstd = joblib.load(FLAGS.mean_std_path)
mean, std = meanstd['mean'], meanstd['std']
normed_image = (image - mean) / std
return normed_image
def __init__(self, input_size, num_hidden, num_classes, utter_embed, bow_utter_embed, config):
self.input_size = input_size
self.num_hidden = num_hidden
self.num_classes = num_classes
self.utter_embed = utter_embed
self.bow_utter_embed = bow_utter_embed
self.logger = config.logger
self.config = config
self.cate_mapping_dict = joblib.load('./dbdc3/data/cate_mapping_dict')
def load(filename, mmap_mode=None):
"""Reconstruct a Python object from a file persisted with joblib.dump."""
f = open(filename, 'rb')
fobj = _read_fileobject(f, filename, mmap_mode)
if isinstance(fobj, (str, unicode)):
return load_compatibility(fobj)
obj = _unpickle(fobj, filename, mmap_mode)
return obj
def load_compatibility(filename):
"""Reconstruct a Python object from a file persisted with joblib.dump.
This function ensure the compatibility of joblib old persistence format (<= 0.9.3)"""
file_handle = open(filename, 'rb')
unpickler = ZipNumpyUnpickler(filename, file_handle=file_handle)
try:
obj = unpickler.load()
finally:
if hasattr(unpickler, 'file_handle'):
unpickler.file_handle.close()
return obj
def load_from_disk(filename):
return load(filename)
def __init__(self, data_dir):
self.data_dir = data_dir
metadata_filename = os.path.join(self.data_dir, "metadata.joblib")
if os.path.exists(metadata_filename):
# self.tasks, self.metadata_df = joblib.load(metadata_filename)
self.tasks, self.metadata_df = load_from_disk(metadata_filename)
else:
raise ValueError("No metadata found on disk")